C语言链表实现一个程序,程序内置始终存有一个多项式p,初始值为0;多项式输入功能可以将p改变为输入的多项式多项式计算操作需要输入一个新多项式p’,将p与p’的运算结果赋予p多项式输出操作可以将p降次幂输

时间: 2024-02-18 10:05:55 浏览: 20
以下是一个基于C语言链表实现多项式计算的程序: ```c #include <stdio.h> #include <stdlib.h> typedef struct node { int coef; // 系数 int exp; // 指数 struct node* next; } node; node* create_node(int coef, int exp) { node* new_node = (node*)malloc(sizeof(node)); new_node->coef = coef; new_node->exp = exp; new_node->next = NULL; return new_node; } node* add_term(node* head, int coef, int exp) { if (head == NULL) { return create_node(coef, exp); } node* curr = head; while (curr->next != NULL) { curr = curr->next; } curr->next = create_node(coef, exp); return head; } node* input_poly() { int n, coef, exp; node* poly = NULL; printf("请输入多项式的项数:"); scanf("%d", &n); for (int i = 0; i < n; i++) { printf("请输入第 %d 项的系数和指数:", i + 1); scanf("%d%d", &coef, &exp); poly = add_term(poly, coef, exp); } return poly; } void print_poly(node* poly) { if (poly == NULL) { printf("0\n"); return; } node* curr = poly; while (curr != NULL) { printf("%d", curr->coef); if (curr->exp > 0) { printf("x^%d", curr->exp); } if (curr->next != NULL && curr->next->coef >= 0) { printf("+"); } curr = curr->next; } printf("\n"); } node* add_poly(node* poly1, node* poly2) { node* res = NULL; node* curr1 = poly1; node* curr2 = poly2; while (curr1 != NULL && curr2 != NULL) { if (curr1->exp > curr2->exp) { res = add_term(res, curr1->coef, curr1->exp); curr1 = curr1->next; } else if (curr1->exp < curr2->exp) { res = add_term(res, curr2->coef, curr2->exp); curr2 = curr2->next; } else { res = add_term(res, curr1->coef + curr2->coef, curr1->exp); curr1 = curr1->next; curr2 = curr2->next; } } while (curr1 != NULL) { res = add_term(res, curr1->coef, curr1->exp); curr1 = curr1->next; } while (curr2 != NULL) { res = add_term(res, curr2->coef, curr2->exp); curr2 = curr2->next; } return res; } node* sub_poly(node* poly1, node* poly2) { node* res = NULL; node* curr1 = poly1; node* curr2 = poly2; while (curr1 != NULL && curr2 != NULL) { if (curr1->exp > curr2->exp) { res = add_term(res, curr1->coef, curr1->exp); curr1 = curr1->next; } else if (curr1->exp < curr2->exp) { res = add_term(res, -curr2->coef, curr2->exp); curr2 = curr2->next; } else { res = add_term(res, curr1->coef - curr2->coef, curr1->exp); curr1 = curr1->next; curr2 = curr2->next; } } while (curr1 != NULL) { res = add_term(res, curr1->coef, curr1->exp); curr1 = curr1->next; } while (curr2 != NULL) { res = add_term(res, -curr2->coef, curr2->exp); curr2 = curr2->next; } return res; } node* mul_poly(node* poly1, node* poly2) { node* res = NULL; node* curr1 = poly1; while (curr1 != NULL) { node* curr2 = poly2; while (curr2 != NULL) { int coef = curr1->coef * curr2->coef; int exp = curr1->exp + curr2->exp; res = add_term(res, coef, exp); curr2 = curr2->next; } curr1 = curr1->next; } return res; } node* pow_poly(node* poly, int n) { node* res = create_node(1, 0); for (int i = 0; i < n; i++) { res = mul_poly(res, poly); } return res; } void free_poly(node* poly) { node* curr = poly; while (curr != NULL) { node* temp = curr; curr = curr->next; free(temp); } } int main() { node* p = create_node(0, 0); int choice; do { printf("1. 输入多项式\n"); printf("2. 输出多项式\n"); printf("3. 加法运算\n"); printf("4. 减法运算\n"); printf("5. 乘法运算\n"); printf("6. 次幂运算\n"); printf("0. 退出程序\n"); printf("请输入您的选择:"); scanf("%d", &choice); switch (choice) { case 1: { printf("请输入多项式 p:\n"); free_poly(p); p = input_poly(); break; } case 2: { printf("多项式 p:"); print_poly(p); break; } case 3: { printf("请输入多项式 p':\n"); node* p1 = input_poly(); node* sum = add_poly(p, p1); printf("p + p' = "); print_poly(sum); free_poly(p1); free_poly(sum); break; } case 4: { printf("请输入多项式 p':\n"); node* p1 = input_poly(); node* diff = sub_poly(p, p1); printf("p - p' = "); print_poly(diff); free_poly(p1); free_poly(diff); break; } case 5: { printf("请输入多项式 p':\n"); node* p1 = input_poly(); node* prod = mul_poly(p, p1); printf("p * p' = "); print_poly(prod); free_poly(p1); free_poly(prod); break; } case 6: { int n; printf("请输入次幂 n:"); scanf("%d", &n); node* pow = pow_poly(p, n); printf("p ^ %d = ", n); print_poly(pow); free_poly(pow); break; } case 0: { free_poly(p); break; } default: { printf("无效选择!\n"); break; } } } while (choice != 0); return 0; } ``` 该程序可以实现以下功能: 1. 输入多项式 2. 输出多项式 3. 多项式加法 4. 多项式减法 5. 多项式乘法 6. 多项式次幂运算 其中,多项式采用链表实现,每个节点代表多项式的一项,包括系数和指数。输入多项式时,先输入多项式的项数,然后逐项输入系数和指数。多项式加法、减法、乘法的实现都比较简单,主要是遍历两个多项式的链表,根据指数的大小关系进行相应的操作。多项式次幂运算采用了暴力的方法,即将多项式连乘 n 次。

相关推荐

void InitPolylist(Polylist *L) {*L = (Polylist)malloc(sizeof(Polylist)); (*L)->next = NULL; } Polylist CreatePolylist()/*输入多项式的系数和指数,用尾插法建立一元多项式的链表*/ {Polylist L; Polynode *s; InitPolylist(&L); double coef; int exp; Polynode *r = L; scanf("%lf %d",&coef,&exp); while(coef != 0) { s = (Polynode *)malloc(sizeof(Polynode)); s->coef = coef; s->exp = exp; s->next = NULL; r->next = s; r = s; scanf("%lf %d",&coef,&exp); } r->next = NULL; return L; } int LengthPolylist(Polylist L) {Polylist r = L; int n = 0; while(r->next != NULL) { n++; r = r->next; } return n; } void OutputPolylist(Polylist L) { Polylist r = L->next; printf("inlcude %d coef/exp list is:\n",LengthPolylist(L)); while(r != NULL) { printf("%.2f,%d\n",r->coef,r->exp); r = r->next; } } Polylist AddPolylist()/*创建两个多项式并相加,完成后显示序列*/ {Polylist l1 = CreatePolylist(); Polylist l2 = CreatePolylist(); Polylist l3; InitPolylist(&l3); Polynode *s; Polylist r1 = l1->next, r2 = l2->next, r3 = l3; double sum; while(r1 != NULL && r2 != NULL) { s = (Polynode *)malloc(sizeof(Polynode)); if(r1->exp < r2->exp) { s->coef = r1->coef; s->exp = r1->exp; r3->next = s; r3 = s; r1 = r1->next; } else if (r1->exp == r2->exp) { sum = r1->coef + r2->coef; if(sum != 0) { s->coef = sum; s->exp = r1->exp; r3->next = s; r3 = s; r1 = r1->next; r2 = r2->next; } else { return l3; } } else { s->coef = r2->coef; s->exp = r2->exp; r3->next = s; r3 = s; r2 = r2->next; } } if(r1 != NULL){ r3->next = r1; } else { r3->next = r2; } return l3; } void ComputePolylist(Polylist L)/*计算多项式在x=%d的值*/ {Polylist r = L->next; double x = 0; double result = 0; scanf("%lf",&x); while(r != NULL) { result += r->coef * pow(x, r->exp); r = r->next; } printf("ComputePolylist in x=%.2f result is:%.2f\n",x,result); } void DestroyPolylist(Polylist L) { Polynode *p = L ,*q = L->next; while(q) { free(p); p = q; q = q->next; } free(p); printf("destroy"); } 解释一下这个代码

最新推荐

recommend-type

C语言:一元多项式加减法运算(链表 附答案).docx

C语言链表的入门题,里面提供了两种思路供参考,用链表来实现一元多项式的加减法,并按照一定规律输出。也是练习链表和排序算法的一道小实验,初学链表的小伙伴可以参考参考噢
recommend-type

数据结构实验报告之一元多项式求和(链表)报告2.doc

把任意给定的两个一元多项式P(x) ,Q(x) 输入计算机,计算它们的和并输出计算结果。 实验内容: 1.问题描述: 一元多项式求和——把任意给定的两个一元多项式P(x) ,Q(x) 输入计算机,计算它们的和并输出计算结果。
recommend-type

C语言链表题目(附答案).docx

大一初学C语言时的期末作业,涉及到链表的建立和功能的实现,涉及指针、函数、动态结构建立等方面的知识,初学者可以参考参考尝试尝试哟!!!
recommend-type

C语言程序设计实现 雪花飘落

编程思路:首先在程序开始处,开通语句#include引入头函数,建立函数,然后定义结构体变量Snow,并且编写雪花的一系列操作的函数;最后在main函数的内部实现对各子函数的调用,实现雪花飘落的过程。 三.主要解决...
recommend-type

C语言数据结构实现链表逆序并输出

主要介绍了C语言数据结构实现链表逆序并输出的相关资料,需要的朋友可以参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。