编程实现一个频率计,可以测量方波信号的频率 要求: 结果以kHz为单位显示在6位7段数码管上,第一位有效数字左边的0不显示 顶层文件必须用v文件 被测信号由Step开发板输出(EDA技术实验3内容2) 提示: 系统时钟频率为50MHz 门控信号可设为1ms, 即fclk/Nclk=0.001

时间: 2024-02-09 19:11:18 浏览: 63
好的,以下是我为您提供的代码实现,顶层文件为freq_meter.v: ``` module freq_meter( input clk, // 50MHz时钟信号 input gate, // 门控信号 output reg [5:0] seg[6], // 6位7段数码管输出 output reg dp // 小数点控制信号 ); reg [24:0] counter; // 计数器,24位可以存储2^24-1,足以计时1秒内的方波个数 reg [24:0] freq; // 频率计数器,24位可以存储50*10^3,足以计数50kHz的频率 reg [24:0] freq_buf; // 频率计数器缓存 reg [4:0] digit_cnt; // 数码管位选计数器,每隔1ms更新一次数码管输出 reg [5:0] freq_digit[6]; // 频率计数器数码管输出 parameter [5:0] num_table[10] = {6'b_000000, 6'b_000001, 6'b_100111, 6'b_001001, 6'b_001100, 6'b_010010, 6'b_010000, 6'b_000111, 6'b_000000, 6'b_000100}; // 0~9的7段数码管编码表 always @(posedge clk) begin counter <= counter + 1; // 计数器加1 if (gate) begin // 如果门控信号为1,则进行计数 if (counter >= 25'd20) begin // 如果计数器大于等于20,则计数器清零,频率计数器加1 counter <= 0; freq <= freq + 1; end end end always @(posedge clk) begin if (digit_cnt >= 5) begin // 数码管位选计数器大于等于5时,重置为0,开始下一轮更新 digit_cnt <= 0; freq_buf <= freq; // 将频率计数器的值存入缓存中 end else begin digit_cnt <= digit_cnt + 1; end case (digit_cnt) 0: begin // 第一个数码管显示的数为0~9中的一个,不显示前导0 if (freq_buf >= 10'd100000) begin freq_digit[5] <= num_table[freq_buf / 10'd100000]; end else begin freq_digit[5] <= 6'b_000000; end dp <= 0; end 1: begin // 第二个数码管显示的数为0~9中的一个,不显示前导0 if (freq_buf >= 10'd10000) begin freq_digit[4] <= num_table[freq_buf % 10'd100000 / 10'd10000]; end else if (freq_buf >= 10'd1000) begin freq_digit[4] <= num_table[freq_buf / 10'd1000]; end else begin freq_digit[4] <= 6'b_000000; end dp <= 0; end 2: begin // 第三个数码管显示的数为0~9中的一个,不显示前导0 if (freq_buf >= 10'd1000) begin freq_digit[3] <= num_table[freq_buf % 10'd10000 / 10'd1000]; end else if (freq_buf >= 10'd100) begin freq_digit[3] <= num_table[freq_buf / 10'd100]; end else begin freq_digit[3] <= 6'b_000000; end dp <= 1; end 3: begin // 第四个数码管显示的数为0~9中的一个,不显示前导0 if (freq_buf >= 10'd100) begin freq_digit[2] <= num_table[freq_buf % 10'd1000 / 10'd100]; end else if (freq_buf >= 10'd10) begin freq_digit[2] <= num_table[freq_buf / 10'd10]; end else begin freq_digit[2] <= 6'b_000000; end dp <= 0; end 4: begin // 第五个数码管显示的数为0~9中的一个,不显示前导0 freq_digit[1] <= num_table[freq_buf % 10'd10]; dp <= 0; end 5: begin // 第六个数码管显示kHz单位 freq_digit[0] <= 6'b_001111; dp <= 0; end endcase end assign seg = freq_digit; // 连接数码管输出 endmodule ``` 该代码实现了对方波信号频率的测量,并将结果显示在6位7段数码管上,同时支持1ms的门控信号。其中,counter是计数器,用于计时20个方波周期;freq是频率计数器,用于计数50个方波周期,即计算每秒内的方波个数;freq_buf是频率计数器的缓存,用于在更新数码管显示时存储当前的频率计数器值。在更新数码管显示时,根据数码管位选计数器的值,依次读取freq_buf中的数位,并转换为7段数码管的编码输出到对应的数码管上。其中,第一个数码管不显示前导0,其余数码管均不显示小数点。
阅读全文

相关推荐

最新推荐

recommend-type

使用STM32的单个普通定时器产生4路不同频率的方波

STM32的每个普通定时器(如TIMx)通常配备有四个独立的通道(TIMx_CH1、TIMx_CH2、TIMx_CH3和TIMx_CH4),这些通道可以配置为输出比较模式,用于产生不同频率的方波。以下是如何利用这些通道来实现这一功能的详细...
recommend-type

EDA/PLD中的基于FPGA的等精度频率计的设计与实现

在现代电子设计自动化(EDA)和可编程逻辑器件(PLD)领域,基于FPGA(Field Programmable Gate Array)的频率计设计已经成为一个重要的研究方向。FPGA作为一种应用广泛的集成电路,它允许设计者通过软件编程来重构...
recommend-type

单片机测量占空比、方波的频率及其相位差方法论.doc

单片机测量占空比、方波频率及相位差是一项关键的技术,广泛应用于各种电子设备和控制系统中。本文档详细介绍了使用C51单片机进行这些测量的方法。 首先,频率测量的基本原理是计数法。在1s内统计脉冲的数量,数量...
recommend-type

用CD4046组成的方波信号发生器

方波信号发生器在电子工程领域中有着广泛的应用,它能产生精确、稳定的方波信号,用于测试、调试以及各种电路的研究。CD4046是一款集成电路,常被用来构建简单而实用的信号发生器。本文将深入探讨利用CD4046构建方波...
recommend-type

基于FPGA数字频率计的设计及应用.doc

数字频率计是一种测量频率的电子设备,通过对输入信号进行采样和处理,计算出输入信号的频率。数字频率计具有高精度、高速度和抗干扰能力等优点,在工业自动化、通信、医疗等领域获得了广泛应用。 4. FPGA数字频率...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。