def collate_fn(batch: List[Tuple[torch.Tensor, torch.Tensor]]) -> Tuple[torch.Tensor, torch.Tensor]: """数据处理函数""" texts = [item[0] for item in batch] labels = [item[1] for item in batch] max_len = max([len(text) for text in texts]) texts = [torch.cat([text, torch.tensor([0] * (max_len - len(text)))]) for text in texts] labels = [torch.cat([label, torch.tensor([-1] * (max_len - len(label)))]) for label in labels] mask = torch.tensor([[1] * len(text) + [0] * (max_len - len(text)) for text in texts]) return torch.stack(texts), torch.stack(labels), mask
时间: 2023-07-01 10:04:02 浏览: 169
这是一个用于PyTorch中的数据处理函数,输入参数为一个由Tuple组成的List。每个Tuple包含两个Tensor,第一个Tensor为文本数据,第二个Tensor为标签数据。该函数通过以下步骤处理数据:
1. 将所有文本数据存入一个列表texts中,将所有标签数据存入一个列表labels中。
2. 找到texts中最长的文本,并将所有文本的长度都调整为最长文本的长度。
3. 将texts列表中的每一个Tensor都用0进行填充,使其长度与最长文本相同。
4. 将labels列表中的每一个Tensor都用-1进行填充,使其长度与最长文本相同。
5. 创建一个掩码矩阵mask,用1表示文本数据的有效部分,用0表示文本数据的填充部分。
6. 返回一个Tuple,包含三个Tensor,分别为处理后的文本数据、处理后的标签数据和掩码矩阵。
相关问题
AttributeError: module 'torch.utils.data' has no attribute 'collate' AttributeError: module 'torch.utils.data' has no attribute 'collate' AttributeError: module 'torch.utils.data' has no attribute 'collate' AttributeError: module 'torch.utils.data' has no attribute 'collate' AttributeError: module 'torch.utils.data' has no attribute 'collate' AttributeError: module 'torch.utils.data' has no attribute 'collate' AttributeError: module 'torch.utils.data' has no attribute 'collate' module 'torch.utils.data' has no attribute 'collate'
这个错误通常发生在使用了旧版本的PyTorch库时。`torch.utils.data.collate`是在较新的PyTorch版本中引入的函数,用于将样本列表转换为批量数据。建议你更新你的PyTorch库到最新版本,以解决这个问题。你可以使用以下命令来更新PyTorch:
```
pip install --upgrade torch
```
如果你已经安装了`torch`,可以使用以下命令来获取最新版本:
```
pip install --upgrade torch --no-cache-dir
```
请确保在运行这些命令之前,你已经安装了适合你系统的Python包管理器(如`pip`)。希望这可以帮助你解决问题!如果还有其他问题,请随时提问。
default_collate_func = dataloader.default_collate def default_collate_override(batch): dataloader._use_shared_memory = False return default_collate_func(batch) setattr(dataloader, 'default_collate', default_collate_override) for t in torch._storage_classes: if sys.version_info[0] == 2: if t in ForkingPickler.dispatch: del ForkingPickler.dispatch[t] else: if t in ForkingPickler._extra_reducers: del ForkingPickler._extra_reducers[t]这段代码的作用是什么
这段代码是用来设置在使用PyTorch的dataloader时改变默认的batch处理方式,以提高性能。具体来说,它使用了一个函数重载机制来替换原有的batch处理函数,并且禁用了共享内存的使用。同时,它还清除了一些与数据序列化相关的配置,以确保程序能够正确地运行。
阅读全文