能不要collate_fn=train_dataset.collate_fn吗
时间: 2023-08-30 12:11:41 浏览: 101
如果你的train_dataset没有定义collate_fn函数,那么你不能使用`collate_fn=train_dataset.collate_fn`这样的写法。因为此时train_dataset.collate_fn是未定义的。但是,如果你已经在train_dataset中定义了collate_fn函数,那么就可以在创建DataLoader时使用它。`collate_fn`参数定义了如何对不同的样本进行处理和组合,以便创建一个batch。如果你没有定义collate_fn函数,DataLoader将会使用默认的方式来对样本进行组合,这可能会导致一些错误。因此,如果你已经定义了collate_fn函数,最好在创建DataLoader时使用它。
相关问题
collate_fn=train_dataset.collate_fn,
这行代码通常是在使用 PyTorch 的 DataLoader 时用到的,它指定了如何将一个 batch 中的多个样本合并成一个 batch。在此代码中,train_dataset 是一个 PyTorch Dataset 对象,而 collate_fn 是一个函数,用于将多个样本合并成一个 batch。该函数通常接收一个由多个样本组成的 list,然后返回一个 batch,其中每个元素表示一个样本。这个函数的实现可以根据具体的应用场景进行调整和优化。
train_dataset = LegacyPPIDataset(mode='train') valid_dataset = LegacyPPIDataset(mode='valid') test_dataset = LegacyPPIDataset(mode='test') train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate) n_classes = train_dataset._labels.shape[1] num_feats = train_dataset.features.shape[1]
这段代码是用来加载和处理数据集的。其中`LegacyPPIDataset`是一个自定义的数据集类,用于加载PPID(Protein-Protein Interaction)数据集。`mode`参数指定了数据集的模式,可以是训练集、验证集或测试集。`DataLoader`是一个PyTorch中用于批量处理数据的工具,将数据集分成一批一批的,方便模型训练。`batch_size`参数指定了每个批次的大小。`collate`参数是一个自定义的函数,用于将数据集中的样本转换成模型可以处理的格式。`n_classes`和`num_feats`分别表示类别数和特征数量。这段代码的作用是将数据集加载到内存中,方便模型训练。
阅读全文