data_groupby=data.groupby['类别','口味','环境','服务','人均消费','性价比']da
时间: 2023-10-01 09:03:52 浏览: 44
抱歉,您的代码中有一个语法错误。应该将 `groupby` 方法应用于 `data` 上,并且需要使用圆括号而不是方括号来指定分组键。正确的代码应该是:
```
data_groupby = data.groupby(['类别', '口味', '环境', '服务', '人均消费', '性价比'])
```
这将返回一个 pandas 的 `DataFrameGroupBy` 对象,您可以使用该对象上的聚合方法来计算每个组的统计量。例如,您可以使用 `mean()` 方法计算每个组的均值:
```
data_groupby.mean()
```
请注意,这仅适用于数值列。如果您的数据包含非数值列,您可能需要使用其他聚合函数,例如 `count()` 或 `first()`。
相关问题
import pandas as pd import os Workpath = 'D:\PACK数据\规范化文件\功能测试数据' for filename in os.listdir(Workpath): path_excel = os.path.join(Workpath, filename) da = pd.read_excel(path_excel, sheet_name='详细') data = da.groupby('步骤序号').tail(1) # Handling CAN0_Cell columns max_number_cell = 0 for column_name in data.columns: if isinstance(column_name, str) and 'CAN0_Cell_' in column_name: num_str = column_name.split('_')[-1] num_cell = int(num_str) max_number_cell = max(max_number_cell, num_cell) if num_cell < 500: # Adding new columns and setting their data as None for i in range(max_number_cell + 1, 491): new_column_name = f'CAN0_Cell_{i:03d}' data[new_column_name] = None # Sorting columns containing "CAN0_Cell_" column_names_cell = [col for col in data.columns if col.startswith('CAN0_Cell_')] sorted_column_names_cell = sorted(column_names_cell, key=lambda x: int(x.split('_')[-1]) if x.split('_')[-1].isdigit() else 0) data = data[sorted_column_names_cell],这个代码·运行后data中不包含CAN0_Cell的列就没了,怎么实现
很抱歉,我之前给出的代码有误导性,并且对于您的问题没有给出正确的解决方案。以下是一个修改后的代码,用于在DataFrame中筛选出以"CAN0_Cell_"开头的列,并按照列名中的数字顺序对这些列进行排序:
```python
import pandas as pd
import os
Workpath = 'D:\PACK数据\规范化文件\功能测试数据'
for filename in os.listdir(Workpath):
path_excel = os.path.join(Workpath, filename)
da = pd.read_excel(path_excel, sheet_name='详细')
data = da.groupby('步骤序号').tail(1)
# Handling CAN0_Cell columns
column_names_cell = [col for col in data.columns if col.startswith('CAN0_Cell_')]
sorted_column_names_cell = sorted(column_names_cell,
key=lambda x: int(x.split('_')[-1]) if x.split('_')[-1].isdigit() else 0)
data = data[sorted_column_names_cell]
# Adding missing CAN0_Cell columns
max_number_cell = int(sorted_column_names_cell[-1].split('_')[-1]) if sorted_column_names_cell else 0
for i in range(max_number_cell + 1, 491):
new_column_name = f'CAN0_Cell_{i:03d}'
data[new_column_name] = None
# Sorting columns again to include newly added columns
sorted_column_names_cell = sorted(data.columns,
key=lambda x: int(x.split('_')[-1]) if x.split('_')[-1].isdigit() else 0)
data = data[sorted_column_names_cell]
# Output the modified DataFrame
print(data)
```
在这个修改后的代码中,我们首先筛选出以"CAN0_Cell_"开头的列,并按照列名中的数字顺序对这些列进行排序。然后,我们通过获取最大数字来确定需要添加的缺失列,并逐个添加到DataFrame中。接下来,我们再次按照列名中的数字顺序对DataFrame进行排序,以确保新添加的列也按照正确的顺序包含在其中。
请注意,这里的代码仅仅是输出了修改后的DataFrame,您可以根据实际需求进行相应的处理或保存操作。如果对这个代码有任何疑问或需要进一步的帮助,请随时提问。
import pandas as pd import os Workpath = 'D:\PACK数据\规范化文件\功能测试数据' for filename in os.listdir(Workpath): path_excel = os.path.join(Workpath, filename) da = pd.read_excel(path_excel, sheet_name='详细') data = da.groupby('步骤序号').tail(1) # Handling CAN0_Cell columns max_number_cell = 0 for column_name in data.columns: if isinstance(column_name, str) and 'CAN0_Cell_' in column_name: num_str = column_name.split('_')[-1] num_cell = int(num_str) max_number_cell = max(max_number_cell, num_cell) if num_cell < 500: # Adding new columns and setting their data as None for i in range(max_number_cell + 1, 491): new_column_name = f'CAN0_Cell_{i:03d}' data[new_column_name] = None # Sorting columns containing "CAN0_Cell_" column_names_cell = [col for col in data.columns if col.startswith('CAN0_Cell_')] sorted_column_names_cell = sorted(column_names_cell, key=lambda x: int(x.split('_')[-1]) if x.split('_')[-1].isdigit() else 0) data = data[sorted_column_names_cell],怎么修改才能使列名中分别包含CAN0_Temp_和CAN0_Cell_的列按照各自连接的数字进行排序
要使列名中分别包含"CAN0_Temp_"和"CAN0_Cell_"的列按照各自连接的数字进行排序,您可以使用以下代码:
```python
import pandas as pd
import os
Workpath = 'D:\PACK数据\规范化文件\功能测试数据'
for filename in os.listdir(Workpath):
path_excel = os.path.join(Workpath, filename)
da = pd.read_excel(path_excel, sheet_name='详细')
data = da.groupby('步骤序号').tail(1)
# Handling CAN0_Cell and CAN0_Temp columns
column_names_cell = [col for col in data.columns if col.startswith('CAN0_Cell_')]
column_names_temp = [col for col in data.columns if col.startswith('CAN0_Temp_')]
sorted_column_names_cell = sorted(column_names_cell,
key=lambda x: int(x.split('_')[-1]) if x.split('_')[-1].isdigit() else 0)
sorted_column_names_temp = sorted(column_names_temp,
key=lambda x: int(x.split('_')[-1]) if x.split('_')[-1].isdigit() else 0)
data = data[sorted_column_names_temp + sorted_column_names_cell]
# Output the modified DataFrame
print(data)
```
在这个修改后的代码中,我们首先分别筛选出以"CAN0_Cell_"和"CAN0_Temp_"开头的列,并按照各自连接的数字顺序对这些列进行排序。然后,我们将排序后的"CAN0_Temp_"列和"CAN0_Cell_"列连接起来,以生成最终的排序后的列名列表。最后,我们根据新的列名顺序重新排列DataFrame。
请注意,这里的代码仅仅是输出了修改后的DataFrame,您可以根据实际需求进行相应的处理或保存操作。如果对这个代码有任何疑问或需要进一步的帮助,请随时提问。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)