x_data.append(time.time())

时间: 2024-05-31 09:07:32 浏览: 46
As an AI language model, I cannot provide a specific answer as I lack context. However, I can tell you that this line of code is appending the current time in seconds since the epoch to a list called x_data. It is using the time module's time() function to retrieve the current time.
相关问题

解释下这段代码watch_time_record = openpyxl.load_workbook("eye_movement_record_43.xlsx") #这里要改文件名,最后头要改储存文件名 images_workbook = openpyxl.load_workbook("images.xlsx") fix_record = watch_time_record["FIX"] images_info = images_workbook["Sheet1"] # watch_time_record.close() # images_workbook.close() # 注意openpyxl读取excel的时候,行从1开始,列仍从0开始 out_data_workbook = ow.Workbook(write_only=True) out_data_sheet = out_data_workbook.create_sheet("watch_time_stat_fix") # out_data_sheet.append(["start_time", "end_time", "duration", "coordinate_x", "coordinate_y", "pupil_size"]) out_data_sheet.append( ["trail_index", "img", "trail_start_time", "trail_end_time", "object1_duration", "object1_times", "object2_duration", "object2_times"])

这段代码的作用是使用openpyxl库导入Excel文件,并在其中读取指定的工作表信息,同时也创建了一个新的Excel文件,以待写入数据。 具体解释如下: 1. `watch_time_record = openpyxl.load_workbook("eye_movement_record_43.xlsx")`:使用`openpyxl`库中的`load_workbook()`函数读取名为`eye_movement_record_43.xlsx`的Excel文件,并将其存储到`watch_time_record`变量中,以便后续读取工作表信息。 2. `images_workbook = openpyxl.load_workbook("images.xlsx")`:同样使用`openpyxl`库中的`load_workbook()`函数读取名为`images.xlsx`的Excel文件,并将其存储到`images_workbook`变量中,以便后续读取工作表信息。 3. `fix_record = watch_time_record["FIX"]`:使用`watch_time_record`变量中打开的Excel文件中的`"FIX"`工作表,并将其存储到`fix_record`变量中,以便后续读取信息。 4. `images_info = images_workbook["Sheet1"]`:使用`images_workbook`变量中打开的Excel文件中的`"Sheet1"`工作表,并将其存储到`images_info`变量中,以便后续读取信息。 5. `out_data_workbook = ow.Workbook(write_only=True)`:创建一个新的Excel文件,并将其存储到`out_data_workbook`变量中,以待写入数据。 6. `out_data_sheet = out_data_workbook.create_sheet("watch_time_stat_fix")`:在`out_data_workbook`变量中创建一个名为`"watch_time_stat_fix"`的工作表,并将其存储到`out_data_sheet`变量中,以待写入数据。 7. `out_data_sheet.append(["trail_index", "img", "trail_start_time", "trail_end_time", "object1_duration", "object1_times", "object2_duration", "object2_times"])`:向`out_data_sheet`工作表中添加一行数据,该行包含了多个列名,用于在后续的数据写入中进行参考。

data.fillna(method='ffill', inplace=True) date_history,data_history = pd.DataFrame(data.iloc[:, 0]) data_history = pd.DataFrame(data.iloc[:, 1]) date_history = np.array(date_history) data_history = [x for item in np.array(data_history).tolist() for x in item] # 缺失值处理 history_time_list = [] for date in date_history: date_obj = datetime.datetime.strptime(date[0], '%Y/%m/%d %H:%M') #将字符串转为 datetime 对象 history_time_list.append(date_obj) start_time = history_time_list[0] # 起始时间 end_time = history_time_list[-1] # 结束时间 delta = datetime.timedelta(minutes=15) #时间间隔为15分钟 time_new_list = [] current_time = start_time while current_time <= end_time: time_new_list.append(current_time) current_time += delta # 缺失位置记录 code_list = [] for i in range(len(time_new_list)): code_list = code_list history_time_list = history_time_list while (time_new_list[i] - history_time_list[i]) != datetime.timedelta(minutes=0): history_time_list.insert(i, time_new_list[i]) code_list.append(i) for i in code_list: data_history.insert(i, data_history[i - 1]) # 输出补充好之后的数据 data = pd.DataFrame({'date': time_new_list, 'load': data_history}) return data 代码优化

以下是对代码的优化: ```python data.fillna(method='ffill', inplace=True) date_history, data_history = data.iloc[:, 0], data.iloc[:, 1:].values.flatten() date_history = np.array([datetime.datetime.strptime(date, '%Y/%m/%d %H:%M') for date in date_history]) start_time, end_time = date_history[0], date_history[-1] delta = datetime.timedelta(minutes=15) time_new_list = [] current_time = start_time while current_time <= end_time: time_new_list.append(current_time) current_time += delta code_list = [i for i, date in enumerate(date_history) if date not in time_new_list] for i in code_list: data_history = np.insert(data_history, i, data_history[i - 1]) data = pd.DataFrame({'date': time_new_list, 'load': data_history}) return data ``` 代码优化的主要思路是: 1. 将第二列数据展平成一维数组,避免后续操作需要用到的循环。 2. 将日期字符串转换为 datetime 对象。 3. 使用列表推导式生成时间序列。 4. 使用列表推导式生成缺失位置列表。 5. 使用 NumPy 的 `insert()` 方法在数据中插入缺失值。 6. 最后将补充好的数据转换为 DataFrame 返回。 这样可以使代码更加简洁、高效,并且减少不必要的循环。
阅读全文

相关推荐

def parse_constellation_from_lla(): lla_data_filename = data_folder_path + constellation_name + '-Current-Constellation-LLA.txt'; satellite_trace_grouped_by_time = {}; months = sp_utils.sp_month_map(); id = 0; with open(lla_data_filename, errors='ignore') as file: lla_data_list = []; lla_data_per_satellite_list = []; for line in file: # LLA location data of each satellite starts with a line with "Time (UTCG)" if ("Time (UTCG)" in line): # save LLA data already parsed, and start a new list for next satellite if (len(lla_data_per_satellite_list)): print("Save %s samples for satellite %s" % (str(len(lla_data_per_satellite_list)), str(id))); lla_data_list.append(copy.deepcopy(lla_data_per_satellite_list)); write_satellite_lla_to_csv(lla_data_per_satellite_list, id); lla_data_per_satellite_list.clear(); id = id + 1; continue; # Time (UTCG) Lat (deg) Lon (deg) Alt (km) Lat Rate (deg/sec) Lon Rate (deg/sec) Alt Rate (km/sec) # 7 Jul 2020 19:00:00.000 -52.162 166.811 570.070856 -0.013114 0.095196 0.005696 line = line.split(); if (len(line) == 10): sample = sp_lla_trace(); sample.time = line[2] + "-" + str(months[line[1]]) + "-" + line[0] + "-" + line[3] sample.time = sample.time.replace(":", "-"); sample.time = sample.time.replace(".000", ""); sample.latitude = line[4]; sample.longitude = line[5]; sample.attitude = line[6]; sample.id = id; lla_data_per_satellite_list.append(copy.deepcopy(sample)); # append satellite LLA location to a certain time slot. if (sample.time not in satellite_trace_grouped_by_time.keys()): satellite_trace_grouped_by_time[sample.time] = []; satellite_trace_grouped_by_time[sample.time].append(copy.deepcopy(sample)); # save the last satellite. if (len(lla_data_per_satellite_list)): print("Save %s samples in for satellite %s" % (str(len(lla_data_per_satellite_list)), str(id))); lla_data_list.append(copy.deepcopy(lla_data_per_satellite_list)); write_satellite_lla_to_csv(lla_data_per_satellite_list, id); lla_data_per_satellite_list.clear(); print("Extract LLA location of %s satellites in total." % str(id)); # save LLA location trace grouped by time slots all_time_slots = satellite_trace_grouped_by_time.keys(); print("Save LLA location by time slot."); for time_slot in all_time_slots: write_satellite_lla_by_time(time_slot, satellite_trace_grouped_by_time[time_slot]); print("Saving LLA location in %s." % time_slot); print("LLA location saved to files.");

最新推荐

recommend-type

基于 .NET 5 + Ant Design Vue 的 Admin Fx.zip

基于 .NET 5 + Ant Design Vue 的 Admin FxColder.Admin.AntdVueWeb后台快速开发框架,.NET5+Ant Design Vue版本代码(GitHub)https://github.com/Coldairarrow/Colder.Admin.AntdVue文档(GitHub)https://github.com/Coldairarrow/Colder.Admin.AntdVue/wiki代码(码云镜像)https ://gitee.com/Coldairarrow/Colder.Admin.AntdVue文档(码云镜像)https://gitee.com/Coldairarrow/Colder.Admin.AntdVue/wikis在线预览地址http://coldairarrow.gitee.io/colder.amin.antdvue.preview.web/ (账号/密码Admin 123456)
recommend-type

基于java的KTV点歌系统设计新版源码+数据库+说明.zip

基于java的KTV点歌系统设计新版源码+数据库+说明 项目经过严格调试,确保可以运行! 开发语言:Java 框架:ssm 技术:JSP JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7(一定要5.7版本) 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包:Maven3.3.9
recommend-type

【java毕业设计】学生心理咨询评估系统源码(springboot+vue+mysql+说明文档+LW).zip

管理员可以管理个人中心,用户管理,试题管理,试卷管理,考试管理等。用户参加考试。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型