以平均包络谱熵为适应度函数,利用麻雀搜索算法自适应地寻找不同工况下的最优模态数K和惩罚因子α的matlab函数
时间: 2024-02-01 11:15:34 浏览: 157
以下是一个基于麻雀搜索算法的自适应寻找最优模态数K和惩罚因子α的Matlab函数。其中,适应度函数为平均包络谱熵。
```matlab
function [K_opt, alpha_opt] = MSSA_ESA(A, K_min, K_max, alpha_min, alpha_max, N, max_iter)
% A: 输入信号矩阵,每一行代表一个信号
% K_min, K_max: 模态数的搜索范围
% alpha_min, alpha_max: 惩罚因子的搜索范围
% N: 麻雀群体数量
% max_iter: 最大迭代次数
% 初始化麻雀群体
K = randi([K_min, K_max], N, 1);
alpha = rand(N, 1) * (alpha_max - alpha_min) + alpha_min;
% 计算适应度
fitness = zeros(N, 1);
for i = 1:N
[~, ~, ~, ~, ~, ~, ~, ~, mse] = MSSA(A, K(i), alpha(i));
fitness(i) = mean(mse);
end
% 寻找最优解
iter = 1;
while iter <= max_iter
% 随机交换两只麻雀
idx1 = randi(N);
idx2 = randi(N);
while idx2 == idx1
idx2 = randi(N);
end
temp_K = K(idx1);
K(idx1) = K(idx2);
K(idx2) = temp_K;
temp_alpha = alpha(idx1);
alpha(idx1) = alpha(idx2);
alpha(idx2) = temp_alpha;
% 计算适应度
[~, ~, ~, ~, ~, ~, ~, ~, mse1] = MSSA(A, K(idx1), alpha(idx1));
[~, ~, ~, ~, ~, ~, ~, ~, mse2] = MSSA(A, K(idx2), alpha(idx2));
fitness1 = mean(mse1);
fitness2 = mean(mse2);
% 更新最优解
if fitness1 < fitness(idx1)
fitness(idx1) = fitness1;
end
if fitness2 < fitness(idx2)
fitness(idx2) = fitness2;
end
[min_fitness, min_idx] = min(fitness);
K_opt = K(min_idx);
alpha_opt = alpha(min_idx);
% 更新迭代次数
iter = iter + 1;
end
end
```
其中,`MSSA`函数是一个多重信号分解函数,可以根据自己的需要自行编写。在本函数中,我们假设`MSSA`函数返回了每个信号的平均包络谱熵,即`mse`。
阅读全文