File "D:\anaconda3\envs\DDPGtorch\lib\multiprocessing\process.py", line 315, in _bootstrap self.run()
时间: 2023-09-15 20:20:15 浏览: 163
这个错误通常是由于多进程中的某些代码出现了异常或错误导致的。具体来说,"_bootstrap"是Python多进程库中的一个函数,用于启动并初始化新的进程。在这种情况下,该函数出现了异常并且导致了进程无法正常启动。您可能需要检查您的代码,特别是在多进程环境中运行的部分,以查找并修复错误。如果您能提供更多上下文或代码细节,我可以更好地帮助您解决这个问题。
相关问题
Traceback (most recent call last): File "D:/pythonProject/test2.py", line 46, in <module> for i, data in enumerate(trainloader, 0): File "D:\pythonProject\venv\lib\site-packages\torch\utils\data\dataloader.py", line 359, in __iter__ return self._get_iterator() File "D:\pythonProject\venv\lib\site-packages\torch\utils\data\dataloader.py", line 305, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "D:\pythonProject\venv\lib\site-packages\torch\utils\data\dataloader.py", line 918, in __init__ w.start() File "D:\Anaconda\lib\multiprocessing\process.py", line 105, in start self._popen = self._Popen(self) File "D:\Anaconda\lib\multiprocessing\context.py", line 223, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "D:\Anaconda\lib\multiprocessing\context.py", line 322, in _Popen return Popen(process_obj) File "D:\Anaconda\lib\multiprocessing\popen_spawn_win32.py", line 65, in __init__ reduction.dump(process_obj, to_child) File "D:\Anaconda\lib\multiprocessing\reduction.py", line 60, in dump ForkingPickler(file, protocol).dump(obj) _pickle.PicklingError: Can't pickle <function <lambda> at 0x00000190FCFD0D90>: attribute lookup <lambda> on __main__ failed Process finished with exit code 1
这个错误是因为在使用 PyTorch 的 DataLoader 的时候,出现了不能序列化的函数对象,可能是因为你的函数对象 lambda 没有被正确定义或者引用。你可以尝试改变你的代码,或者检查你的代码中是否存在没有被正确定义或者引用的函数对象。另外,你可以考虑使用 PyTorch 的 multiprocessing 库来解决这个问题。
ERROR: Exception: Traceback (most recent call last): File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher yield File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read data = self._fp_read(amt) if not fp_closed else b"" File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read return self._fp.read(amt) if amt is not None else self._fp.read() File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 90, in read data = self.__fp.read(amt) File "E:\Anaconda\envs\pytorch\lib\http\client.py", line 463, in read n = self.readinto(b) File "E:\Anaconda\envs\pytorch\lib\http\client.py", line 507, in readinto n = self.fp.readinto(b) File "E:\Anaconda\envs\pytorch\lib\socket.py", line 704, in readinto return self._sock.recv_into(b) File "E:\Anaconda\envs\pytorch\lib\ssl.py", line 1242, in recv_into return self.read(nbytes, buffer) File "E:\Anaconda\envs\pytorch\lib\ssl.py", line 1100, in read return self._sslobj.read(len, buffer) socket.timeout: The read operation timed out During handling of the above exception, another exception occurred: Traceback (most recent call last): File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\cli\base_command.py", line 160, in exc_logging_wrapper status = run_func(*args) File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\cli\req_command.py", line 247, in wrapper return func(self, options, args) File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\commands\install.py", line 419, in run requirement_set = resolver.resolve( File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 92, in resolve result = self._result = resolver.resolve( File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\resolvelib\resolvers.py"
看起来你在使用pip下载PyTorch时遇到了一个网络连接超时的错误。这通常是由于网络问题引起的。你可以尝试以下几种方法来解决这个问题:
1. 检查你的网络连接是否正常,确保你能够访问互联网。
2. 重试下载命令,有时候下载命令可能会因为网络问题而失败。你可以再次运行下载命令,看看问题是否得到解决。
3. 更换下载源,有时候下载源的问题也可能导致下载失败。你可以尝试切换到其他镜像源,比如清华大学的镜像源。
```
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
```
如果你需要下载支持CUDA的PyTorch版本,可以使用以下命令:
```
pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple
```
4. 如果以上方法都不起作用,你可以尝试等待一段时间,然后再次尝试下载命令。可能只是暂时的网络问题。
希望这些方法能够帮助解决你的问题!
阅读全文