多约束背包问题的研究人物

时间: 2023-10-28 08:41:22 浏览: 47
多约束背包问题是一个经典的组合优化问题,它涉及到在满足多个约束条件的情况下,如何最大化一个背包的价值。以下是一些在多约束背包问题领域做出重要贡献的研究人物: 1. David Pisinger:丹麦技术大学的教授,是多约束背包问题领域的知名专家之一。他提出了很多有效的算法和启发式方法,包括基于遗传算法的求解方法、基于分支定界的求解方法以及基于动态规划的求解方法等。 2. Hans Kellerer:奥地利林茨大学的教授,是多约束背包问题领域的权威人物之一。他主要研究离散优化问题,特别是背包问题和调度问题。他提出了很多有效的算法和启发式方法,包括基于贪心算法的求解方法、基于分支定界的求解方法以及基于遗传算法的求解方法等。 3. Martine Labbé:比利时布鲁塞尔自由大学的教授,是多约束背包问题领域的知名专家之一。她主要研究组合优化和运筹学问题,特别是背包问题和旅行商问题。她提出了很多有效的算法和启发式方法,包括基于分支定界的求解方法、基于遗传算法的求解方法以及基于动态规划的求解方法等。 4. Silvano Martello:意大利博洛尼亚大学的教授,是多约束背包问题领域的知名专家之一。他主要研究组合优化和运筹学问题,特别是背包问题和旅行商问题。他提出了很多有效的算法和启发式方法,包括基于贪心算法的求解方法、基于分支定界的求解方法以及基于遗传算法的求解方法等。
相关问题

多约束背包问题的研究人物、时间

多约束背包问题是一个复杂的优化问题,在研究过程中涉及到了许多学者。以下是其中一些主要研究人物和时间: 1. Dantzig 和 Ramser 在 1959 年提出了第一个多约束背包问题模型; 2. Balas 和 Fulkerson 在 1965 年提出了多维 0/1 背包问题模型; 3. Martello 和 Toth 在 1990 年提出了多重背包问题的启发式算法; 4. Kellerer 等人在 2004 年提出了纯粹多重背包问题的分支定界算法; 5. Osorio 和 Perea 在 2015 年提出了一种基于贪心策略的多重背包问题近似算法。 以上只是多约束背包问题研究中的一部分重要人物和时间,这个领域还有很多其他的研究者和研究成果。

多约束背包问题的研究人物、成果、时间

多约束背包问题是指在背包问题中,除了物品重量和体积的限制外,还存在其他的约束条件,例如物品之间的关联性、物品的数量限制等。该问题在实际应用中具有重要意义,如资源分配、生产调度等领域。 以下是多约束背包问题的研究人物、成果、时间的简要介绍: 1. Dantzig 和 Ramser(1959)提出了多重背包问题(Multiple Knapsack Problem),将背包问题从单个背包扩展到多个背包,每个背包都有自己的容量限制。 2. Lawler(1970)提出了赋权约束背包问题(Weighted Constraint Satisfaction Problem, WCSP),该问题将约束条件表示为一组变量的值域,要求在满足所有约束条件的前提下,最大化目标函数的值。 3. Gilmore 和 Gomory(1961)提出了多维背包问题(Multidimensional Knapsack Problem),该问题考虑了多个属性的限制,例如物品的重量、体积、价值等。 4. Kolesar 和 Womer(1967)提出了多目标背包问题(Multiple Objective Knapsack Problem),该问题要求在满足多个目标函数的前提下,寻找最优的解。 5. Martello 和 Toth(1990)提出了多重约束背包问题(Multiple-Constraint Knapsack Problem, MCKP),该问题将背包问题的约束条件扩展到多个限制集合,每个限制集合都包含多个约束条件。 6. Savelsbergh 和 Sol (1995) 提出了多层约束背包问题(Multilevel Knapsack Problem),该问题在多重背包问题的基础上,考虑了物品之间的关联性,每个物品都有一个层次结构,不同层次的物品之间存在约束关系。 7. Zhu 和 Chen(2004)提出了混合约束多背包问题(Hybrid Constrained Multiple Knapsack Problem, HCMKP),该问题结合了多重约束背包问题和多维背包问题的特点,考虑了物品的数量限制和属性限制。 以上是多约束背包问题的一些研究人物、成果和时间的简要介绍,这些成果为该问题的研究和实际应用提供了重要的参考。

相关推荐

最新推荐

recommend-type

python基于递归解决背包问题详解

主要介绍了python基于递归解决背包问题,递归是个好东西,任何具有递归性质的问题通过函数递归调用会变得很简单。一个很复杂的问题,几行代码就能搞定,需要的朋友可以参考下
recommend-type

Python基于回溯法解决01背包问题实例

这种方法特别适用于解决约束满足问题,如组合优化问题。 在Python中,我们可以通过以下步骤使用回溯法解决01背包问题: 1. **定义问题**: 我们有一组物品,每件物品有重量`w[i]`和价值`v[i]`,以及一个背包的总...
recommend-type

Python基于动态规划算法解决01背包问题实例

01背包问题是一种经典的组合优化问题,常出现在计算机科学和运筹学中。在这个问题中,我们有一个容量有限的背包(容量为C)和n件物品,每件物品都有一个重量w[i]和一个对应的价值v[i]。目标是选择物品放入背包中,...
recommend-type

遗传算法求解01背包问题——问题分析

01背包问题属于组合优化问题的一个例子,求解01背包问题的过程可以被视作在很多可行解当中求解一个最优解。01背包问题的一般描述如下: 给定n个物品和一个背包,物品i的重量为Wi,其价值为Vi,背包的容量为C。选择...
recommend-type

背包问题模板 hdu2191

背包问题有多种变形,包括0/1背包问题、完全背包问题、多重背包问题等。 在给定的文件中,提供了一个通用的背包问题模板,使用C++语言实现。该模板可以解决各种背包问题,只需要根据问题的需求修改参数即可。 在这...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。