import pandas as pd import datetime data = pd.read_excel(r'E:\每日数据\MISPOS明细.xlsx',dtype={'商户编号':str,'终端编号':str}) rows = data.shape[0] # 获取行数 shape[1]获取列数 department_list = [] for i in range(rows): temp = data["省份"][i] if temp not in department_list: department_list.append(temp) # 将省份的分类存在一个列表中 for department in department_list: new_df = pd.DataFrame() for i in range(0, rows): if data["省份"][i] == department: new_df = pd.concat([new_df, data.iloc[[i], :]], axis=0, ignore_index=True) # 上面的循环效率太低了,这么做太蠢了,其实可以用pandas的条件筛选 new_df = data[data["省份"] == department] # 如果多条件筛选,new_df = data[(data["省份"] == department)&()&()] 括号里写条件用 & 连起来 new_df.to_excel(str(department) +"旧机具未处理明细" + ".xlsx", sheet_name=department, index=False)
时间: 2024-01-28 22:05:46 浏览: 65
功能说明-详解pandas库pd.read_excel操作读取excel文件参数整理与实例
您好,看起来这段代码是将一个 Excel 文件按照“省份”进行分类,并将分类后的结果保存到不同的 Excel 文件中。如果您想要增加一个筛选条件来选择“旧机具未处理”的数据,可以按照以下方式进行修改:
1. 在读入数据时需要将“处理情况”这一列的数据类型设置为字符串,代码如下:
```
data = pd.read_excel(r'E:\每日数据\MISPOS明细.xlsx', dtype={'商户编号': str, '终端编号': str, '处理情况': str})
```
2. 接着,可以使用 Pandas 的条件筛选功能,选择“处理情况”为“旧机具未处理”的数据,代码如下:
```
new_df = data[(data["省份"] == department) & (data["处理情况"] == "旧机具未处理")]
```
3. 最后,将筛选后的数据保存到新的 Excel 文件中,代码如下:
```
new_df.to_excel(str(department) + "_旧机具未处理明细" + ".xlsx", sheet_name=department, index=False)
```
上面这行代码中的“_旧机具未处理明细”可以根据您的需求进行修改。
阅读全文