dqn python代码
时间: 2023-07-03 16:21:44 浏览: 112
以下是一个简单的DQN(Deep Q-Network)的Python实现,使用TensorFlow 2.0框架:
```python
import gym
import tensorflow as tf
import numpy as np
class DQNAgent:
def __init__(self, env):
# 初始化环境和神经网络参数
self.env = env
self.input_shape = env.observation_space.shape
self.output_shape = env.action_space.n
self.learning_rate = 0.001
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.memory = []
self.batch_size = 32
self.model = self.build_model()
def build_model(self):
# 构建神经网络模型
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(24, input_shape=self.input_shape, activation='relu'))
model.add(tf.keras.layers.Dense(24, activation='relu'))
model.add(tf.keras.layers.Dense(self.output_shape, activation='linear'))
model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=self.learning_rate))
return model
def act(self, state):
# 选择行动
if np.random.rand() <= self.epsilon:
return self.env.action_space.sample()
else:
return np.argmax(self.model.predict(state))
def remember(self, state, action, reward, next_state, done):
# 存储经验
self.memory.append((state, action, reward, next_state, done))
def replay(self):
# 经验回放
if len(self.memory) < self.batch_size:
return
batch = np.random.choice(self.memory, self.batch_size)
for state, action, reward, next_state, done in batch:
target = reward
if not done:
target = reward + self.gamma * np.amax(self.model.predict(next_state)[0])
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def train(self, episodes):
# 开始训练
for i in range(episodes):
state = self.env.reset()
state = np.reshape(state, [1, self.input_shape[0]])
done = False
score = 0
while not done:
action = self.act(state)
next_state, reward, done, info = self.env.step(action)
next_state = np.reshape(next_state, [1, self.input_shape[0]])
self.remember(state, action, reward, next_state, done)
state = next_state
score += reward
self.replay()
print('Episode: %d, Score: %d, Epsilon: %.2f' % (i, score, self.epsilon))
if __name__ == "__main__":
env = gym.make('CartPole-v0')
agent = DQNAgent(env)
agent.train(1000)
```
这个代码实现了一个DQN智能体,用于在OpenAI Gym的CartPole任务中学习。 该智能体使用经验回放来训练其神经网络,以使其能够预测最佳行动,并且逐渐减小其随机探索率,以便更多地依赖于其神经网络的输出。
阅读全文