pytorch 实现FM算法
时间: 2023-06-19 17:07:58 浏览: 106
Python实现FM算法解析
FM(因子分解机)是一种经典的推荐算法,它可以用于处理稀疏数据并且具有较好的预测性能。下面是使用PyTorch实现FM算法的基本步骤:
1. 导入需要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
```
2. 定义FM模型
```python
class FM(nn.Module):
def __init__(self, input_dim, k):
super(FM, self).__init__()
self.k = k
self.linear = nn.Linear(input_dim, 1)
self.v = nn.Parameter(torch.randn(input_dim, k))
def forward(self, x):
linear_part = self.linear(x)
inter_part1 = torch.matmul(x, self.v)
inter_part2 = torch.matmul(torch.pow(x, 2), torch.pow(self.v, 2))
inter_part = 0.5 * torch.sum(torch.sub(inter_part1, inter_part2), 1, keepdim=True)
output = linear_part + inter_part
return output
```
3. 定义训练函数
```python
def train(model, dataloader, optimizer, criterion):
model.train()
train_loss = 0
for batch_idx, (data, target) in enumerate(dataloader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
train_loss += loss.item()
loss.backward()
optimizer.step()
return train_loss / len(dataloader.dataset)
```
4. 定义测试函数
```python
def test(model, dataloader, criterion):
model.eval()
test_loss = 0
with torch.no_grad():
for data, target in dataloader:
output = model(data)
test_loss += criterion(output, target).item()
return test_loss / len(dataloader.dataset)
```
5. 加载数据集和设置超参数
```python
from torch.utils.data import DataLoader, Dataset
class CustomDataset(Dataset):
def __init__(self, x, y):
self.x = x
self.y = y
def __getitem__(self, index):
return self.x[index], self.y[index]
def __len__(self):
return len(self.x)
X_train, y_train = ...
X_test, y_test = ...
train_dataset = CustomDataset(X_train, y_train)
test_dataset = CustomDataset(X_test, y_test)
batch_size = 64
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
input_dim = X_train.shape[1]
k = 10
lr = 0.01
num_epochs = 50
```
6. 训练模型
```python
model = FM(input_dim, k)
optimizer = optim.SGD(model.parameters(), lr=lr)
criterion = nn.MSELoss()
for epoch in range(num_epochs):
train_loss = train(model, train_dataloader, optimizer, criterion)
test_loss = test(model, test_dataloader, criterion)
print(f'Epoch {epoch+1}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}')
```
这样就可以使用PyTorch实现FM算法了。
阅读全文