build_hdf5_image_dataset(trainset, image_shape=(224, 224), mode='folder', output_path='new_train.h5', categorical_labels=True, normalize=False)
时间: 2024-02-04 20:03:17 浏览: 230
`build_hdf5_image_dataset` 是一个函数,用于将图像数据转换为HDF5格式的数据集。下面是函数各个参数的含义:
- `trainset`:表示图像数据集,可以是一个列表或者一个数据生成器,包含了所有训练图像的路径和标签等信息。
- `image_shape`:表示图像的大小,以元组的形式表示,如`(224, 224)`。
- `mode`:表示构建数据集的方式,可以是'folder'、'file'或'mixed'中的一种。
- `output_path`:表示输出的HDF5格式数据集的路径。
- `categorical_labels`:表示标签是否采用one-hot编码,如果是,则为True,否则为False。
- `normalize`:表示是否将图像数据进行归一化处理,如果是,则为True,否则为False。
例如,使用以下代码将文件夹中的图像数据转换为HDF5格式数据集:
```
from tflearn.data_utils import build_hdf5_image_dataset
dataset_file = 'my_dataset.h5'
data_folder = 'image_folder'
build_hdf5_image_dataset(data_folder, image_shape=(224, 224), mode='folder', output_path=dataset_file, categorical_labels=True, normalize=True)
```
上述代码将把 `data_folder` 文件夹中的图像数据转换为HDF5格式数据集,并保存到文件 `my_dataset.h5` 中,其中图像大小为 `(224, 224)`,标签采用了one-hot编码,并对图像数据进行了归一化处理。
阅读全文