分层残差块用pytorch代码实现
时间: 2023-11-05 16:02:32 浏览: 90
图像分类残差网络-pytorch实现
Sure, here's an example implementation of a residual block with layer normalization in PyTorch:
```python
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, dim, dropout=0.1):
super(ResidualBlock, self).__init__()
self.norm1 = nn.LayerNorm(dim)
self.dropout1 = nn.Dropout(dropout)
self.fc1 = nn.Linear(dim, dim)
self.norm2 = nn.LayerNorm(dim)
self.dropout2 = nn.Dropout(dropout)
self.fc2 = nn.Linear(dim, dim)
def forward(self, x):
# First layer
residual = x
x = self.norm1(x)
x = nn.functional.relu(x)
x = self.dropout1(x)
x = self.fc1(x)
# Second layer
x = self.norm2(x)
x = nn.functional.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
# Residual connection
x += residual
return x
```
I hope this helps!
阅读全文