linux 实验 父进程创建三个子进程,父子进程间通过共享内存实现进程通信。该共享内存为长度为10 的整型数组,子进程1先往共享内存中存放数据1~10,接着子进程2从共享内存中读取数据1~5,然后子进程3从共享内存中读取数据6~10,最后由父进程撤销共享内存。注意父子进程间同步关系的实现。

时间: 2024-03-26 19:35:50 浏览: 76
好的,这是一个比较典型的进程间通信的例子。我会尽力解答你的问题。 首先,我们需要使用共享内存来实现进程间通信。在 Linux 系统中,可以使用 System V IPC(Inter-Process Communication)机制来实现共享内存操作。具体来说,我们需要使用以下几个函数: - `shmget`:创建共享内存区域,或获取已有共享内存区域的标识符。 - `shmat`:将共享内存区域映射到进程的地址空间中。 - `shmdt`:解除共享内存区域和进程地址空间的映射关系。 - `shmctl`:控制共享内存区域的状态,如删除共享内存区域。 接下来,我们可以使用 fork() 函数创建父进程和三个子进程。父进程可以使用 shmget() 函数创建一个长度为 10 的整型数组的共享内存区域,并使用 shmat() 函数将其映射到自己的地址空间中。然后,父进程可以使用 fork() 函数创建三个子进程,每个子进程都可以使用 shmat() 函数将共享内存区域映射到自己的地址空间中。这样,父进程和三个子进程就可以通过共享内存来进行通信了。 具体实现如下: ```c #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/ipc.h> #include <sys/shm.h> #define SHM_SIZE 10 int main() { int shmid; int *shm; int i; // 创建共享内存区域 shmid = shmget(IPC_PRIVATE, SHM_SIZE * sizeof(int), IPC_CREAT | 0666); if (shmid == -1) { perror("shmget"); exit(1); } // 映射共享内存区域到父进程地址空间中 shm = (int *)shmat(shmid, NULL, 0); if (shm == (int *)-1) { perror("shmat"); exit(1); } // 创建三个子进程 for (i = 0; i < 3; i++) { if (fork() == 0) { // 子进程 int j; int start, end; switch (i) { case 0: // 子进程1往共享内存中存放数据1~10 for (j = 0; j < SHM_SIZE; j++) { shm[j] = j + 1; } printf("子进程1往共享内存中存放数据1~10\n"); break; case 1: // 子进程2从共享内存中读取数据1~5 start = 0; end = SHM_SIZE / 2 - 1; printf("子进程2从共享内存中读取数据1~5:"); for (j = start; j <= end; j++) { printf("%d ", shm[j]); } printf("\n"); break; case 2: // 子进程3从共享内存中读取数据6~10 start = SHM_SIZE / 2; end = SHM_SIZE - 1; printf("子进程3从共享内存中读取数据6~10:"); for (j = start; j <= end; j++) { printf("%d ", shm[j]); } printf("\n"); break; default: break; } // 解除共享内存区域和进程地址空间的映射关系 if (shmdt(shm) == -1) { perror("shmdt"); exit(1); } // 子进程结束 exit(0); } } // 等待子进程结束 for (i = 0; i < 3; i++) { wait(NULL); } // 删除共享内存区域 if (shmctl(shmid, IPC_RMID, NULL) == -1) { perror("shmctl"); exit(1); } // 解除共享内存区域和进程地址空间的映射关系 if (shmdt(shm) == -1) { perror("shmdt"); exit(1); } // 父进程结束 return 0; } ``` 在上述代码中,我们使用了 switch 语句来区分不同的子进程。子进程1往共享内存中存放数据1~10,子进程2从共享内存中读取数据1~5,子进程3从共享内存中读取数据6~10。父进程等待三个子进程结束后,删除共享内存区域,并解除共享内存区域和进程地址空间的映射关系。 需要注意的是,父子进程之间的同步关系需要使用进程间通信的机制来实现。常见的进程间通信的机制包括信号量、消息队列、管道、共享内存等。在本例中,我们使用了共享内存来实现进程间通信,因此不需要额外使用其他的进程间通信的机制来实现同步关系。
阅读全文

相关推荐

最新推荐

recommend-type

总结:linux进程间通信的几种机制的比较及适用场合

7. **套接字(socket)**:套接字不仅支持进程间通信,还能用于跨网络的进程通信。它提供了丰富的数据格式和连接管理功能,适用于需要网络通信的场景。 选择合适的IPC机制取决于具体应用的需求,如: - **联网与否...
recommend-type

操作系统实验四 进程的管道通信 实验报告

实验的具体实现中,父进程首先调用`pipe(fd)`创建管道,然后通过`fork()`创建两个子进程P1和P2。子进程P1和P2分别使用`write(fd[1], buf, 50)`将特定的消息写入管道,而父进程则通过`read(fd[0], s, 50)`从管道读取...
recommend-type

Linux中使用C语言的fork()函数创建子进程的实例教程

在Linux操作系统中,C语言的`fork()`函数是创建新进程的关键工具。...开发者可以通过`fork()`返回的值来识别并管理父子进程,进一步利用C语言提供的系统调用来实现进程间的通信和协作,实现更复杂的多进程程序设计。
recommend-type

操作系统实验二 进程通信机制的应用

操作系统实验二“进程通信机制的应用”旨在通过实践深入理解进程并发执行的概念,以及掌握进程和线程的创建、控制及通信方法。实验报告要求学生在Linux环境下,运用系统调用进行进程和线程的编程与调试,从而更好地...
recommend-type

进程间通信(华工操作系统)

通过`shmget`获取或创建共享内存,`shmat`将共享内存映射到进程地址空间,然后可以像操作普通内存一样操作共享内存。在多进程之间,任何进程对共享内存的修改都会立即对所有其他映射了该内存的进程可见。 实验环境...
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"