用R语言编写查看R语言自带的数据集airquality(纽约1973年5-9月每日空气质量)。列出airquality的前十行,并将这前十行保存到air中。任选三个列,查看airquality中列的对象类型。使用names查看airquality数据集中各列的名称。将air这个数据框导出为csv格式文件。(write.table (x, file ="", sep ="", row.names =TRUE, col.names =TRUE, quote =TRUE))
时间: 2024-02-23 08:03:22 浏览: 220
好的,以下是您的问题的回答:
```R
# 加载airquality数据集
data(airquality)
# 列出前十行并保存到air
air <- head(airquality, 10)
air
# 任选三个列,查看对象类型
class(air$Ozone)
class(air$Month)
class(air$Temp)
# 使用names查看列名
names(airquality)
# 导出为csv文件
write.table(air, file = "air.csv", sep = ",", row.names = TRUE, col.names = TRUE, quote = TRUE)
```
注意:这里导出的csv文件将被保存在您的R工作目录中。
相关问题
R语言airquality
`airquality` 是一个 R 语言中自带的数据集,它记录了纽约市在 1973 年 5 月至 9 月期间每天的空气质量指标。这个数据集包含了五个变量:
- Ozone:臭氧浓度(ppb)
- Solar.R:太阳辐射量(lang)
- Wind:风速(mph)
- Temp:气温(华氏度)
- Month:月份(5-9)
你可以使用以下代码来加载这个数据集:
```r
data(airquality)
```
然后可以使用 `summary()` 函数来查看数据集的概要信息:
```r
summary(airquality)
```
这个函数会输出各个变量的一些统计信息,如最小值、最大值、中位数、平均数等等。你也可以使用其他函数来对数据进行分析和可视化。
r语言airquality 岭回归、lasso回归、决策树回归效果检验R语言代码
岭回归和lasso回归可以使用glmnet包,决策树回归可以使用rpart包来实现。下面是一个简单的示例代码,使用airquality数据集进行回归分析:
岭回归:
```R
library(glmnet)
data(airquality)
# 岭回归模型
x <- model.matrix(Ozone ~ ., data = airquality)[,-1]
y <- airquality$Ozone
ridge_mod <- glmnet(x, y, alpha = 0, lambda = 0.1)
plot(ridge_mod)
```
lasso回归:
```R
library(glmnet)
data(airquality)
# lasso回归模型
x <- model.matrix(Ozone ~ ., data = airquality)[,-1]
y <- airquality$Ozone
lasso_mod <- glmnet(x, y, alpha = 1, lambda = 0.1)
plot(lasso_mod)
```
决策树回归:
```R
library(rpart)
data(airquality)
# 决策树回归模型
fit <- rpart(Ozone ~ ., data = airquality, method = "anova")
summary(fit)
```
在实际应用中,需要对模型进行交叉验证,并计算模型的预测准确率等指标来评估模型的效果。
阅读全文
相关推荐
















