ef load_faces(self): if not os.path.exists(self.data_dir): os.makedirs(self.data_dir) files = os.listdir(self.data_dir) for file in files: try: name = file.split('.')[0] file_path = os.path.join(self.data_dir, file) print(self.add_face_label(cv2.imread(file_path), name, scale=1)) except Exception as e: print(e)分别是什么意思
时间: 2023-05-23 15:06:18 浏览: 71
A:这是一个Python语言模型代码段,其中的函数load_faces()用于读取指定目录下的图像文件,并将每个文件添加到人脸数据集中。
- 如果指定的数据目录不存在,则创建该目录。
- 列出包含在该目录中的所有文件,并对每个文件执行以下步骤:
- 通过文件名获取该文件所代表人脸的名称。
- 将该文件读入内存,并使用指定的比例尺对其进行缩放。
- 将该人脸数据添加到人脸数据集中,并将其与其对应的名称相关联。
- 如果在读取文件或添加到人脸数据集时发生错误,则将该错误打印到控制台中。
相关问题
ef load_faces(self): if not os.path.exists(self.data_dir): os.makedirs(self.data_dir) files = os.listdir(self.data_dir) for file in files: try: name = file.split('.')[0] file_path = os.path.join(self.data_dir, file) print(self.add_face_label(cv2.imread(file_path), name, scale=1)) except Exception as e: print(e)
这段代码主要是用来加载模型需要的人脸数据,并将其转换为模型可以处理的格式。首先,代码会检查是否存在数据目录,如果不存在则创建数据目录。然后,代码会遍历数据目录下的所有文件,并尝试将每个文件转换为人脸标签,其中标签名为文件名去除后缀名。最后,如果出现异常,则会打印异常信息。这段代码的实现比较简单明了,可以方便地进行人脸识别等应用的训练和测试。
current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') class Model(nn.Module): def __init__(self, template_path): super(Model, self).__init__() # set template mesh self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr') self.vertices = (self.template_mesh.vertices * 0.5).stop_grad() self.faces = self.template_mesh.faces.stop_grad() self.textures = self.template_mesh.textures.stop_grad() # optimize for displacement map and center self.displace = jt.zeros(self.template_mesh.vertices.shape) self.center = jt.zeros((1, 1, 3)) # define Laplacian and flatten geometry constraints self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0]) self.flatten_loss = FlattenLoss(self.faces[0]) def execute(self, batch_size): base = jt.log(self.vertices.abs() / (1 - self.vertices.abs())) centroid = jt.tanh(self.center) vertices = (base + self.displace).sigmoid() * nn.sign(self.vertices) vertices = nn.relu(vertices) * (1 - centroid) - nn.relu(-vertices) * (centroid + 1) vertices = vertices + centroid # apply Laplacian and flatten geometry constraints laplacian_loss = self.laplacian_loss(vertices).mean() flatten_loss = self.flatten_loss(vertices).mean() return jr.Mesh(vertices.repeat(batch_size, 1, 1), self.faces.repeat(batch_size, 1, 1), dr_type='n3mr'), laplacian_loss, flatten_loss 在每行代码后添加注释
# 导入必要的包
import os
import jittor as jt
from jittor import nn
import jrender as jr
# 定义数据文件夹路径
current_dir = os.path.dirname(os.path.realpath(__file__))
data_dir = os.path.join(current_dir, 'data')
# 定义模型类
class Model(nn.Module):
def __init__(self, template_path):
super(Model, self).__init__()
# 设置模板网格
self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr')
self.vertices = (self.template_mesh.vertices * 0.5).stop_grad() # 顶点坐标
self.faces = self.template_mesh.faces.stop_grad() # 面
self.textures = self.template_mesh.textures.stop_grad() # 纹理
# 优化位移贴图和中心点
self.displace = jt.zeros(self.template_mesh.vertices.shape) # 位移贴图
self.center = jt.zeros((1, 1, 3)) # 中心点坐标
# 定义拉普拉斯约束和平坦几何约束
self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0])
self.flatten_loss = FlattenLoss(self.faces[0])
def execute(self, batch_size):
base = jt.log(self.vertices.abs() / (1 - self.vertices.abs())) # 基础值
centroid = jt.tanh(self.center) # 中心点
vertices = (base + self.displace).sigmoid() * nn.sign(self.vertices) # 顶点坐标
vertices = nn.relu(vertices) * (1 - centroid) - nn.relu(-vertices) * (centroid + 1) # 顶点坐标变换
vertices = vertices + centroid # 顶点坐标变换
# 应用拉普拉斯约束和平坦几何约束
laplacian_loss = self.laplacian_loss(vertices).mean() # 拉普拉斯约束损失
flatten_loss = self.flatten_loss(vertices).mean() # 平坦几何约束损失
return jr.Mesh(vertices.repeat(batch_size, 1, 1), # 重复顶点坐标
self.faces.repeat(batch_size, 1, 1), # 重复面
dr_type='n3mr'), laplacian_loss, flatten_loss
阅读全文