用matlab写一个分别采用 KF、EKF和UKF测试IEEE-14 测试系统节点 9电压幅值的估计值的代码
时间: 2024-04-30 07:19:47 浏览: 86
以下是一个简单的 MATLAB 代码,用于使用 KF、EKF 和 UKF 估计 IEEE-14 测试系统节点 9 的电压幅值。请注意,这只是一个简单的示例,实际的应用可能需要更复杂的模型和参数调整。
```matlab
% Load IEEE-14 test system data
load('ieee14.mat');
% Define measurement model for voltage amplitude at node 9
H = zeros(1,14);
H(9) = 1;
% Define process noise covariance matrix
Q = eye(14) * 1e-6;
% Define measurement noise covariance matrix
R = 0.1;
% Define initial state estimate and covariance
x0 = zeros(14,1);
P0 = eye(14);
% Initialize filter parameters
kf_x = x0;
kf_P = P0;
ekf_x = x0;
ekf_P = P0;
ukf_x = x0;
ukf_P = P0;
% Loop through measurements
for k = 1:size(V,2)
% Get measurement
z = abs(V(9,k));
% Kalman filter
kf_x_ = A * kf_x;
kf_P_ = A * kf_P * A' + Q;
K = kf_P_ * H' / (H * kf_P_ * H' + R);
kf_x = kf_x_ + K * (z - H * kf_x_);
kf_P = (eye(14) - K * H) * kf_P_;
% Extended Kalman filter
ekf_f = @(x) A * x;
ekf_h = @(x) abs(x(9));
ekf_x_ = ekf_f(ekf_x);
J = jacobianest(ekf_h,ekf_x);
ekf_P_ = A * ekf_P * A' + Q;
K = ekf_P_ * J' / (J * ekf_P_ * J' + R);
ekf_x = ekf_x_ + K * (z - ekf_h(ekf_x_));
ekf_P = (eye(14) - K * J) * ekf_P_;
% Unscented Kalman filter
ukf_f = @(x) A * x;
ukf_h = @(x) abs(x(9));
[ukf_x_,ukf_P_] = unscented_transform(ukf_f,ukf_x,ukf_P,2);
[z_,ukf_Pz_] = unscented_transform(ukf_h,ukf_x_,ukf_P_,2);
[x_,P_] = unscented_kalman_update(ukf_x_,ukf_P_,z_,ukf_Pz_,R,ukf_f,ukf_h);
ukf_x = x_;
ukf_P = P_;
end
% Plot results
figure;
plot(abs(V(9,:)),'k');
hold on;
plot(abs(kf_x(9,:)),'b');
plot(abs(ekf_x(9,:)),'g');
plot(abs(ukf_x(9,:)),'r');
legend('True','KF','EKF','UKF');
xlabel('Time');
ylabel('Voltage Amplitude');
```
请注意,这个代码使用了一个名为 `unscented_transform` 和 `unscented_kalman_update` 的函数,这些函数可以在 MATLAB 的 Control System Toolbox 中找到。
阅读全文