人脸生成代码
时间: 2023-07-10 19:21:10 浏览: 162
生成人脸的代码可以使用深度学习技术中的生成对抗网络(GAN)。以下是一个使用TensorFlow框架实现的简单GAN生成人脸的代码示例:
```python
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
# 定义生成器网络结构
def generator(z, reuse=None):
with tf.variable_scope('gen', reuse=reuse):
hidden1 = tf.layers.dense(inputs=z, units=128)
alpha = 0.01
hidden1 = tf.maximum(alpha * hidden1, hidden1)
hidden2 = tf.layers.dense(inputs=hidden1, units=128)
hidden2 = tf.maximum(alpha * hidden2, hidden2)
output = tf.layers.dense(inputs=hidden2, units=784, activation=tf.nn.tanh)
return output
# 定义判别器网络结构
def discriminator(X, reuse=None):
with tf.variable_scope('dis', reuse=reuse):
hidden1 = tf.layers.dense(inputs=X, units=128)
alpha = 0.01
hidden1 = tf.maximum(alpha * hidden1, hidden1)
hidden2 = tf.layers.dense(inputs=hidden1, units=128)
hidden2 = tf.maximum(alpha * hidden2, hidden2)
logits = tf.layers.dense(hidden2, units=1)
output = tf.sigmoid(logits)
return output, logits
# 定义输入占位符
real_images = tf.placeholder(tf.float32, shape=[None, 784])
z = tf.placeholder(tf.float32, shape=[None, 100])
# 生成器生成的假图片
G = generator(z)
# 判别器判别真假图片
D_output_real, D_logits_real = discriminator(real_images)
D_output_fake, D_logits_fake = discriminator(G, reuse=True)
# 定义损失函数
def loss_func(logits_in, labels_in):
return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_in, labels=labels_in))
D_real_loss = loss_func(D_logits_real, tf.ones_like(D_logits_real) * 0.9)
D_fake_loss = loss_func(D_logits_fake, tf.zeros_like(D_logits_fake))
D_loss = D_real_loss + D_fake_loss
G_loss = loss_func(D_logits_fake, tf.ones_like(D_logits_fake))
# 定义优化器
lr = 0.001
tvars = tf.trainable_variables()
d_vars = [var for var in tvars if 'dis' in var.name]
g_vars = [var for var in tvars if 'gen' in var.name]
D_trainer = tf.train.AdamOptimizer(lr).minimize(D_loss, var_list=d_vars)
G_trainer = tf.train.AdamOptimizer(lr).minimize(G_loss, var_list=g_vars)
# 训练模型
batch_size = 100
epochs = 100
init = tf.global_variables_initializer()
samples = []
with tf.Session() as sess:
sess.run(init)
for epoch in range(epochs):
num_batches = mnist.train.num_examples // batch_size
for i in range(num_batches):
batch = mnist.train.next_batch(batch_size)
batch_images = batch[0].reshape((batch_size, 784))
batch_images = batch_images * 2 - 1
batch_z = np.random.uniform(-1, 1, size=(batch_size, 100))
_ = sess.run(D_trainer, feed_dict={real_images: batch_images, z: batch_z})
_ = sess.run(G_trainer, feed_dict={z: batch_z})
print("Epoch:", epoch, "D Loss:", sess.run(D_loss, feed_dict={real_images: batch_images, z: batch_z}),
"G Loss:", sess.run(G_loss, feed_dict={z: batch_z}))
sample_z = np.random.uniform(-1, 1, size=(1, 100))
gen_sample = sess.run(generator(z, reuse=True), feed_dict={z: sample_z})
samples.append(gen_sample)
# 显示生成的人脸图片
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=10, ncols=10, sharex=True, sharey=True, figsize=(20, 20))
for i in range(10):
for j in range(10):
axes[i, j].imshow(samples[i * 10 + j].reshape((28, 28)), cmap='gray')
axes[i, j].axis('off')
plt.show()
```
这段代码使用MNIST数据集训练了一个简单的GAN生成手写数字图片。如果要生成人脸,可以将数据集替换成包含人脸图片的数据集,并调整网络结构和超参数。
阅读全文