LinearRegression有ordinal参数吗
时间: 2024-01-17 15:05:45 浏览: 77
Regression modeling strategies second edition
抱歉,我刚才的回答有误。sklearn中的LinearRegression模型并没有`ordinal`参数。
在sklearn中,实现有序逻辑回归的模型是OrdinalRegressor,而不是LinearRegression。OrdinalRegressor是一种适用于有序分类问题的回归模型,它通过将有序分类标签转换为有序数字,来建立一个预测模型。
下面是使用OrdinalRegressor实现有序逻辑回归的示例代码:
```python
from sklearn.datasets import load_iris
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.linear_model import LogisticRegression
from sklearn.utils import validation
from sklearn.utils.multiclass import unique_labels
import numpy as np
class OrdinalRegressor(LogisticRegression):
def __init__(self, *args, **kwargs):
super(OrdinalRegressor, self).__init__(*args, **kwargs)
def fit(self, X, y):
self.classes_ = unique_labels(y)
n_classes = len(self.classes_)
if n_classes < 2:
raise ValueError("Number of classes must be greater than or equal to 2")
elif n_classes == 2:
super(OrdinalRegressor, self).fit(X, y)
else:
y_new = np.zeros(len(y))
for i in range(n_classes):
y_new[y>=self.classes_[i]] = i
super(OrdinalRegressor, self).fit(X, y_new)
def predict(self, X):
y_pred = super(OrdinalRegressor, self).predict(X)
return np.array([self.classes_[int(i)] for i in y_pred])
# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target
# 创建一个有序分类的标签编码器
label_encoder = LabelEncoder()
label_encoder.fit(["setosa", "versicolor", "virginica"])
# 将标签转换为数字编码
y_encoded = label_encoder.transform(iris.target)
# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.3)
# 创建一个有序逻辑回归模型并拟合数据
model = OrdinalRegressor()
model.fit(X_train, y_train)
# 使用模型进行预测
y_pred = model.predict(X_test)
# 计算模型的准确率及其他评估指标
acc = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
matrix = confusion_matrix(y_test, y_pred)
# 输出评估结果
print("Accuracy:", acc)
print("Classification report:")
print(report)
print("Confusion matrix:")
print(matrix)
```
在这个示例中,我们使用sklearn中的OrdinalRegressor模型,将Iris数据集中的鸢尾花品种进行有序分类预测。首先,我们将标签转换为数字编码,然后将数据集划分为训练集和测试集。接着,我们创建一个OrdinalRegressor模型并拟合数据,最后计算模型的准确率及其他评估指标,并输出评估结果。
阅读全文