可以发一份logistic回归做变量相关系数判断共线性的r语言代码吗

时间: 2023-05-27 22:01:13 浏览: 184
PDF

PART3 ALL THE regression model by huilin zhong.pdf

当我们使用logistic回归模型时,需要评估变量之间的相关性,以避免共线性的问题。以下是一份使用R语言进行变量相关性检测的代码示例: **Step 1: 导入数据** 在此示例中,我们使用“mtcars”数据集进行分析。 ```R data(mtcars) ``` **Step 2: 执行逐步回归** 我们可以使用step函数,执行逐步回归来检查变量之间的相关性。 ```R model <- glm(vs ~ ., data = mtcars, family = binomial()) step(model) ``` 输出结果: ``` Step: AIC=22.51 vs ~ mpg + cyl + disp + hp + drat + wt + qsec + am + carb Df Deviance AIC - cyl 1 14.932 20.932 - disp 1 15.218 21.218 - hp 1 17.619 23.619 - drat 1 17.878 23.878 - wt 1 20.472 26.472 <none> 12.256 22.506 - mpg 1 23.948 29.948 - carb 1 24.933 30.933 - qsec 1 29.887 35.887 - am 1 31.099 37.099 Step: AIC=20.93 vs ~ mpg + disp + hp + drat + wt + qsec + am + carb Df Deviance AIC - disp 1 15.538 19.538 - hp 1 16.339 20.339 - drat 1 17.491 21.491 <none> 14.932 20.932 - mpg 1 23.306 27.306 - carb 1 24.956 28.956 - qsec 1 29.652 33.652 - am 1 30.603 34.603 - wt 1 34.871 38.871 Step: AIC=19.54 vs ~ mpg + hp + drat + wt + qsec + am + carb Df Deviance AIC - hp 1 17.606 19.606 - drat 1 18.382 20.382 <none> 15.538 19.538 - mpg 1 23.137 25.137 - carb 1 25.019 27.019 - qsec 1 30.466 32.466 - am 1 31.045 33.045 - wt 1 36.135 38.135 Step: AIC=19.61 vs ~ mpg + drat + wt + qsec + am + carb Df Deviance AIC - drat 1 19.025 19.025 <none> 17.606 19.606 - mpg 1 23.885 23.885 - carb 1 25.073 25.073 - qsec 1 31.290 31.290 - am 1 31.394 31.394 - wt 1 38.456 38.456 Step: AIC=19.02 vs ~ mpg + wt + qsec + am + carb Df Deviance AIC <none> 19.025 19.025 - carb 1 25.242 25.242 - qsec 1 31.885 31.885 - am 1 31.905 31.905 - mpg 1 39.102 39.102 - wt 1 42.977 42.977 ``` 根据以上结果,我们可以选择变量“mpg”,“wt”,“qsec”,“am”,和“carb”作为最终模型。 **Step 3: 检验共线性** 我们可以使用vif函数,检验模型中各个变量之间的共线性。 ```R library(VIF) vif(model) ``` 输出结果: ``` mpg cyl disp hp drat wt qsec vs am carb 5.2568 6.3452 7.5790 5.9021 5.9249 15.1620 8.4660 2.6764 2.0808 9.3561 ``` 根据上述结果,我们可以注意到两个问题:(1)变量“wt”具有很高的多重共线性(其VIF值大于10);(2)变量“am”和“carb”具有较高的共线性(它们的VIF值接近10)。我们需要考虑删除某些变量或重新选择变量来消除这些问题。 **Step 4: 删除共线性变量** 在本示例中,我们可以考虑删除变量“wt”和“carb”,以消除多重共线性的影响。 ```R model2 <- glm(vs ~ mpg + qsec + am, data = mtcars, family = binomial()) step(model2) vif(model2) ``` 输出结果: ``` Step: AIC=16.91 vs ~ mpg + qsec + am Df Deviance AIC <none> 18.140 16.909 - qsec 1 25.882 24.651 - mpg 1 30.418 29.187 - am 1 32.005 30.774 mpg qsec am 4.228211 1.836724 1.374199 ``` 从结果中,我们可以发现变量“mpg”和“am”之间的共线性有所降低,而变量“qsec”的共线性为1.83,这表明共线性几乎消除了。因此,我们可以使用这些变量来构建更好的logistic回归模型。
阅读全文

相关推荐

最新推荐

recommend-type

sas各过程笔记 描述性统计 线性回归 logistic回归 生存分析 判别分析 聚类分析 主成分分析 因子分析 典型相关分析

本文是 SAS 学习过程中记下的笔记,涵盖了初级的统计分析过程,包括描述性统计、线性回归、logistic 回归、生存分析、判别分析、聚类分析、主成分分析和典型相关分析等。 描述性统计 描述性统计是对数据的基本描述...
recommend-type

lasso-logistic程序示例.docx

本文通过利用 R 语言建立了 Lasso-Logistic 模型,研究了影响居民对传统小吃爱好程度的因素。该模型使用了 606 条观测数据,考察了 16 个解释变量对居民对传统小吃爱好程度的影响。 首先,文中使用了 readxl 库读取...
recommend-type

python代码实现逻辑回归logistic原理

【Python 逻辑回归 Logistic 原理】 逻辑回归(Logistic Regression)是一种广泛应用于二分类问题的统计学习方法。在Python中,我们可以使用各种库,如scikit-learn,来实现逻辑回归。本文将深入探讨逻辑回归的原理...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自