使用hyperopt优化pytorch神经网络模型
时间: 2023-09-20 07:10:25 浏览: 251
Hyperopt是一种基于贝叶斯优化的超参数优化工具,可以用于优化PyTorch神经网络模型的超参数。下面是一个简单的示例:
首先,安装必要的库:
```
pip install hyperopt
pip install torch
```
然后,定义一个目标函数,该函数接受超参数并返回模型的性能指标。在这个例子中,我们将使用CIFAR-10数据集,使用交叉熵损失函数和Adam优化器。
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from hyperopt import fmin, tpe, hp, STATUS_OK
def train_model(params):
# 定义超参数
lr = params['lr']
dropout_prob = params['dropout_prob']
hidden_size = params['hidden_size']
batch_size = params['batch_size']
epochs = params['epochs']
# 加载CIFAR-10数据集
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_set = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_set = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, hidden_size)
self.fc2 = nn.Linear(hidden_size, 10)
self.dropout = nn.Dropout(p=dropout_prob)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = self.dropout(torch.relu(self.fc1(x)))
x = self.fc2(x)
return x
net = Net()
# 训练模型
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=lr)
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(train_loader)))
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Accuracy: %.2f%%' % accuracy)
return {'loss': -accuracy, 'status': STATUS_OK}
```
接下来,定义超参数的搜索空间:
```python
space = {
'lr': hp.choice('lr', [0.001, 0.01, 0.1]),
'dropout_prob': hp.uniform('dropout_prob', 0.0, 0.5),
'hidden_size': hp.choice('hidden_size', [64, 128, 256]),
'batch_size': hp.choice('batch_size', [32, 64, 128]),
'epochs': hp.choice('epochs', [10, 20, 30])
}
```
最后,使用Hyperopt运行优化:
```python
best = fmin(train_model, space, algo=tpe.suggest, max_evals=100)
print(best)
```
这将运行100个模型训练,使用TPE算法搜索最佳超参数组合,并返回最佳超参数组合。
阅读全文