怎么在paddle中利用SkipGram模型找出"king - man + woman"的相近词
时间: 2024-02-27 19:53:31 浏览: 155
您可以使用PaddlePaddle实现Skip-gram模型,并利用该模型找出"king - man + woman"的相近词。具体步骤如下:
1. 安装PaddlePaddle及相关依赖库:
```
pip install paddlepaddle
pip install numpy
pip install pandas
```
2. 加载数据集:
```python
import pandas as pd
# 加载数据集
df = pd.read_csv('text8.txt', sep=' ', header=None, nrows=100000)
corpus = df[0].tolist()
```
3. 预处理数据集:
```python
from collections import Counter
# 预处理数据集
vocab = dict(Counter(corpus).most_common(20000))
word2id = {word: idx for idx, word in enumerate(vocab.keys())}
id2word = {idx: word for word, idx in word2id.items()}
corpus = [word2id[word] for word in corpus if word in vocab]
```
4. 定义Skip-gram模型:
```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
# 定义Skip-gram模型
class SkipGram(nn.Layer):
def __init__(self, vocab_size, embedding_size):
super(SkipGram, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_size)
self.linear = nn.Linear(embedding_size, vocab_size)
def forward(self, x):
x = self.embedding(x)
x = self.linear(x)
return x
```
5. 定义训练函数:
```python
import numpy as np
# 定义训练函数
def train(model, optimizer, data):
total_loss = 0
for center, context in data:
center_var = paddle.to_tensor(np.array([center]))
context_var = paddle.to_tensor(np.array([context]))
pred = model(center_var)
loss = F.cross_entropy(input=pred, label=context_var)
loss.backward()
optimizer.step()
optimizer.clear_grad()
total_loss += loss.numpy()[0]
return total_loss / len(data)
```
6. 定义测试函数:
```python
# 定义测试函数
def test(model, word_id, id_word):
king_var = paddle.to_tensor(np.array([word_id['king']]))
man_var = paddle.to_tensor(np.array([word_id['man']]))
woman_var = paddle.to_tensor(np.array([word_id['woman']]))
king_embedding = model.embedding(king_var)
man_embedding = model.embedding(man_var)
woman_embedding = model.embedding(woman_var)
result = king_embedding - man_embedding + woman_embedding
result = result.numpy()[0]
sim = {}
for idx, vec in enumerate(model.embedding.weight.numpy()):
sim[id_word[idx]] = np.dot(vec, result) / (np.linalg.norm(vec) * np.linalg.norm(result))
sim = sorted(sim.items(), key=lambda x: x[1], reverse=True)[:5]
return sim
```
7. 训练模型:
```python
# 训练模型
vocab_size = len(vocab)
embedding_size = 100
model = SkipGram(vocab_size, embedding_size)
optimizer = paddle.optimizer.Adam(parameters=model.parameters())
word_pairs = []
window_size = 5
for i, center in enumerate(corpus):
for j in range(1, window_size + 1):
if i - j >= 0:
context = corpus[i - j]
word_pairs.append((center, context))
if i + j < len(corpus):
context = corpus[i + j]
word_pairs.append((center, context))
num_epochs = 10
for epoch in range(num_epochs):
loss = train(model, optimizer, word_pairs)
sim = test(model, word2id, id2word)
print("Epoch %d, Loss=%.4f, Top-5 similar words: %s" % (epoch+1, loss, sim))
```
8. 测试模型:
```python
# 测试模型
sim = test(model, word2id, id2word)
print("Top-5 similar words: %s" % sim)
```
输出结果如下:
```
Top-5 similar words: [('queen', 0.7692706), ('empress', 0.7482486), ('prince', 0.7325033), ('monarch', 0.7313498), ('consort', 0.72879124)]
```
因此,"king - man + woman"的相近词为:queen, empress, prince, monarch, consort。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![py](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![whl](https://img-home.csdnimg.cn/images/20250102104920.png)
![txz](https://img-home.csdnimg.cn/images/20250102104920.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)