cv2.MORPH_CLOSE

时间: 2023-10-10 19:12:03 浏览: 176
cv2.MORPH_CLOSE 是 OpenCV 中的形态学操作函数之一,用于进行闭运算。闭运算是先进行膨胀操作,再进行腐蚀操作的组合操作,可以用来填充物体内部的小孔或连接物体间的小缝隙,从而使物体更加连通。在对图像进行处理时,闭运算可以去除小的孔洞和突出物体的小部分,同时保持主要结构的形态不变。函数的具体用法如下: ```python cv2.morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) ``` 其中,`src` 表示输入的二值图像;`op` 表示形态学操作类型,可以是 cv2.MORPH_CLOSE;`kernel` 表示结构元素,用于定义膨胀和腐蚀过程中的邻域范围;`dst` 表示输出的二值图像;`anchor` 表示结构元素的锚点,通常设为 (-1, -1) 表示中心点;`iterations` 表示形态学操作的迭代次数;`borderType` 表示边界扩展方式,可以是 cv2.BORDER_CONSTANT、cv2.BORDER_REPLICATE、cv2.BORDER_REFLECT、cv2.BORDER_WRAP、cv2.BORDER_REFLECT_101 等;`borderValue` 表示边界填充的值。
相关问题

kernel = np.ones((10, 10), np.uint8) img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel) img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)。 能详细解释这段代码吗

这段代码是使用OpenCV库中的形态学操作对图像进行处理。首先,创建一个10x10的全1矩阵作为卷积核(kernel)。然后,使用MORPH_CLOSE操作对输入的图像(img_edge)进行闭运算,这个操作可以填充图像中的小孔洞并连接较小的物体。接着,再使用MORPH_OPEN操作对上一步得到的图像(img_edge1)进行开运算,这个操作可以去除图像中的噪点和细小的物体。最终得到的图像是经过形态学操作后的图像(img_edge2)。

def locate_carPlate(car_pic, resize_rate=1): # 预处理图像 img = car_pic pic_hight, pic_width = img.shape[:2] if pic_width > MAX_WIDTH: pic_rate = MAX_WIDTH / pic_width img = cv2.resize(img, (MAX_WIDTH, int(pic_hight * pic_rate)), interpolation=cv2.INTER_LANCZOS4) # cv2.imshow("img", img) if resize_rate != 1: img = cv2.resize(img, (int(pic_width * resize_rate), int(pic_hight * resize_rate)), interpolation=cv2.INTER_LANCZOS4) pic_hight, pic_width = img.shape[:2] blur = cfg["blur"] if blur > 0: img = cv2.GaussianBlur(img, (blur, blur), 0) # 图片分辨率调整 oldimg = img img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 将BGR格式转换成灰度图片 # cv2.imshow("gray", img) kernel = np.ones((20, 20), np.uint8) img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel) # 开运算 # cv2.imshow("opening", img_opening) img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0) # 图像叠加,img - img_opening # cv2.imshow("opening", img_opening) ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # 阈值处理 # cv2.imshow("tresh", img_thresh) img_edge = cv2.Canny(img_thresh, 100, 200) # 边缘检测 # cv2.imshow("edge", img_edge) kernel = np.ones((cfg["morphologyr"], cfg["morphologyc"]), np.uint8) img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel) # 闭运算 # cv2.imshow("edge1", img_edge1) img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel) # cv2.imshow("edge2", img_edge2)

这段代码是用来定位车牌的,首先对图片进行预处理,包括对图片进行缩放、高斯模糊、灰度化、开运算、阈值处理、边缘检测和闭运算等操作,最终得到一个可以用来定位车牌的图像。其中,MAX_WIDTH是一个常量,表示图片的最大宽度;blur表示高斯模糊的半径大小;morphologyr和morphologyc是闭运算和开运算的卷积核大小。这段代码是车牌识别算法中比较重要的部分,通过这些处理可以将车牌从原始图片中准确地定位出来。
阅读全文

相关推荐

请说一下import cv2 cap = cv2.VideoCapture('2.mp4') bgsubmog = cv2.bgsegm.createBackgroundSubtractorMOG() # 保存车辆中心点信息 cars = [] # 统计车的数量 car_n = 0 # 形态学kernel kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) while True:     ret, frame = cap.read()         if(ret == True):         # 灰度处理         cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)         # 高斯去噪         blur = cv2.GaussianBlur(frame, (3, 3), 5)         mask = bgsubmog.apply(blur)         # 腐蚀         erode = cv2.erode(mask, kernel)         # 膨胀         dilate = cv2.dilate(erode, kernel, 3)         # 闭操作         close = cv2.morphologyEx(dilate, cv2.MORPH_CLOSE, kernel)         close = cv2.morphologyEx(close, cv2.MORPH_CLOSE, kernel)                 contours, h = cv2.findContours(close, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE,)                 # 画一条线         cv2.line(frame, (0, 450), (1300, 450), (0, 255, 255), 3)         for (i, c) in enumerate(contours):             (x, y, w, h) = cv2.boundingRect(c)                         # 过滤小的检测框             isshow = (w >= 55) and (h >= 55)             if(not isshow):                 continue                             # 保存中心点信息             cv2.rectangle(frame, (x, y), (x+w, y+h), (0,0,255), 2)             centre_p = (x + int(w/2), y + int(h/2))             cars.append(centre_p)             cv2.circle(frame, (centre_p), 5, (0,0,255), -1)             for (x, y) in cars:                 if(593 < y < 607):                     car_n += 1                     cars.remove((x, y))                     cv2.putText(frame, "Cars Count:" + str(car_n), (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 5)             cv2.imshow('2', frame)                 key = cv2.waitKey(1)     if(key == 27):                  # Esc退出         break cap.release() cv2.destroyAllWindows()每一段代码的意思

大家在看

recommend-type

先栅极还是后栅极 业界争论高K技术

随着晶体管尺寸的不断缩小,HKMG(high-k绝缘层+金属栅极)技术几乎已经成为45nm以下级别制程的必备技术.不过在制作HKMG结构晶体管的 工艺方面,业内却存在两大各自固执己见的不同阵营,分别是以IBM为代表的Gate-first(先栅极)工艺流派和以Intel为代表的Gate-last(后栅极)工艺流派,尽管两大阵营均自称只有自己的工艺才是最适合制作HKMG晶体管的技术,但一般来说使用Gate-first工艺实现HKMG结构的难点在于如何控制 PMOS管的Vt电压(门限电压);而Gate-last工艺的难点则在于工艺较复杂,芯片的管芯密度同等条件下要比Gate-first工艺低,需要设 计方积极配合修改电路设计才可以达到与Gate-first工艺相同的管芯密度级别。
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。
recommend-type

LQR与PD控制在柔性机械臂中的对比研究

LQR与PD控制在柔性机械臂中的对比研究,路恩,杨雪锋,针对单杆柔性机械臂末端位置控制的问题,本文对柔性机械臂振动主动控制中较为常见的LQR和PD方法进行了控制效果的对比研究。首先,�
recommend-type

丹麦电力电价预测 预测未来24小时的电价 pytorch + lstm + 历史特征和价格 + 时间序列

pytorch + lstm + 历史特征和价格 + 时间序列
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表

最新推荐

recommend-type

VB图像处理工具设计(论文+源代码)(2024uq).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

【未发表】基于混沌博弈优化算法CGO优化鲁棒极限学习机RELM实现负荷数据回归预测算法研究附Matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 替换数据可以直接使用,注释清楚,适合新手
recommend-type

droop(非线性负载),基于T型三电平逆变器的非线性负载下同步发电机控制,中点电位平衡控制,电压电流双闭环控制,基波提取算法 1.droop,非线性负载 2.电压电流双闭环,基波提取算法 3.提供

droop(非线性负载),基于T型三电平逆变器的非线性负载下同步发电机控制,中点电位平衡控制,电压电流双闭环控制,基波提取算法。 1.droop,非线性负载 2.电压电流双闭环,基波提取算法 3.提供相关参考文献 支持simulink2022以下版本,联系跟我说什么版本,我给转成你需要的版本(默认发2016b)。
recommend-type

【未发表】基于樽海鞘优化算法SSA优化集成学习结合鲁棒极限学习机RELM-Adaboost实现负荷数据回归预测算法研究附Matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 替换数据可以直接使用,注释清楚,适合新手
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依