morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)什么意思
时间: 2023-06-08 13:07:51 浏览: 157
这段代码是基于OpenCV库实现的形态学操作,morph表示输出图像,cv2.morphologyEx表示形态学操作函数,thresh表示输入二值图像,cv2.MORPH_CLOSE表示形态学操作类型,kernel表示结构元素,iterations表示迭代次数。具体来说,这段代码实现了对输入二值图像进行闭运算操作,即先进行膨胀操作,再进行腐蚀操作。
相关问题
def find_center(img): h, w = img.shape roi_h = int(h * 2 / 3) roi_img = img[roi_h:, :] img_blur = cv2.GaussianBlur(roi_img, (15, 15), 0) # 高斯模糊 ret, th2 = cv2.threshold(img_blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) g2 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) open_img = cv2.morphologyEx(th2, cv2.MORPH_OPEN, g2, iterations=3) x_sum = np.sum(open_img, axis=0) x_point = np.where(x_sum > 0) point_x = int((x_point[0][0] + x_point[0][-1]) / 2) # print(roi_h, w) # np.savetxt('reshape_data.txt', x_point, delimiter=' ', fmt='%i') return point_x 翻译
这是一个 Python 函数,它的作用是从一张图像中找到中心点的横坐标。
函数的参数是一个二维的图像数组 img,表示需要进行处理的图像。
函数的处理过程如下:
- 使用 shape 方法获取图像的高度(h)和宽度(w)。
- 计算一个感兴趣区域(ROI)的高度 roi_h,这个区域从图像的下部 2/3 处开始,到整个图像底部结束。
- 在这个 ROI 区域内,对图像进行高斯模糊,使用的模板大小为 (15, 15)。
- 对模糊后的图像进行二值化处理,使用的方法是 OTSU 自适应阈值二值化算法。
- 对二值化后的图像进行形态学开运算,使用的模板为 3x3 的矩形结构元素,迭代次数为 3。
- 对处理后的图像进行列方向上的求和操作,得到一个一维数组 x_sum,表示每列中像素值为 255 的像素点个数。
- 使用 NumPy 库中的 where 函数,找到 x_sum 数组中值大于 0 的位置,赋值给 x_point。
- 计算 x_point 数组中第一个和最后一个位置的平均值,得到中心点的横坐标 point_x。
- 返回 point_x。
整个函数的作用是对图像进行预处理和分析,找到图像中心点的横坐标。这个函数可以用于自动驾驶等领域的图像处理。
def cell_counter(image, min_area=20): """细胞计数""" # for s in image: df = pd.DataFrame() image =cv2.imread(image) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) distance = ndi.distance_transform_edt(opening) coords = peak_local_max(distance, min_distance=9, footprint=np.ones((7, 7)), labels=opening) mask = np.zeros(distance.shape, dtype=bool) mask[tuple(coords.T)] = True markers, _ = ndi.label(mask) labels = watershed(-distance, markers, mask=opening, watershed_line=True) labels_area = [region.area for region in regionprops(labels) if region.area > min_area] cell_num = len(labels_area) print(cell_num) df = df.append(pd.DataFrame({(file_path,cell_num)}, index=[0]), ignore_index=True) print(df) # return cell_num # df.to_excel('1.xlsx', index=False) if __name__ == '__main__': path = r'D:\0531test' slide_path = os.listdir(path) # df =pd.DataFrame(slide_path) # df.to_excel('1.xlsx',index=False) for i in slide_path: slide_name = os.path.basename(i) #slide_name 样本名称 file_path = os.path.join(path,slide_name) images = os.listdir(file_path) f = glob.glob(os.path.join(file_path, '*.jpg')) for image in f: # print(s) # for s in images: # image_name = os.path.basename(s) # name = image_name.replace('.jpg','') # df = df.append(pd.DataFrame({(file_path,name[:-8])}, index=[0]), ignore_index=True) cell_counter(image) # df.to_excel('1.xlsx',index=False)
这段代码定义了一个名为 `cell_counter` 的函数,它接受一个参数 `image` 以及一个可选参数 `min_area`,默认值为 20。该函数的作用是对传入的图像进行细胞计数,并将计数结果存储在一个 Pandas DataFrame 中。具体的实现过程如下:
1. 创建一个空的 DataFrame `df`。
2. 使用 OpenCV 中的 `cv2.imread()` 函数读取图像。
3. 将图像从 BGR 色彩空间转换为灰度色彩空间,使用 `cv2.cvtColor()` 函数实现。
4. 对灰度图像进行二值化处理,使用 `cv2.threshold()` 函数实现。
5. 对二值化图像进行形态学开运算操作,使用 `cv2.morphologyEx()` 函数实现。
6. 使用 Scikit-image 中的 `ndi.distance_transform_edt()` 函数计算距离变换图像,表示像素到离它们最近的背景像素的距离。
7. 使用 Scikit-image 中的 `peak_local_max()` 函数从距离变换图像中寻找峰值点,作为细胞的中心点。
8. 使用 Scikit-image 中的 `watershed()` 函数基于距离变换图像和峰值点进行分水岭分割,将细胞区域分割出来。
9. 对于每个细胞区域,计算其面积,并存储在 `labels_area` 列表中。
10. 统计 `labels_area` 列表中的元素个数,即为细胞数量,存储在 `cell_num` 变量中。
11. 将 `(file_path, cell_num)` 存储在一个新的 DataFrame 中,并将该 DataFrame 追加到 `df` 中。
12. 打印 `df`。
13. 如果作为脚本运行,则遍历指定路径下的所有图像文件,调用 `cell_counter()` 函数,并将结果存储在一个名为 `1.xlsx` 的 Excel 文件中。
该函数的实现比较复杂,涉及到了多个图像处理库的函数。其中,Scikit-image 是一个常用的图像处理库,提供了许多常用函数和算法,可以方便地实现许多图像处理任务。
阅读全文