f = plt.figure(figsize=(12, 7)) f.suptitle('Label Counts for a Sample of Clients') client_data = collections.OrderedDict() for i in range(6): client_data[f'client_{i}'] = ( train_images[i*1000:(i+1)*1000], train_labels[i*1000:(i+1)*1000]) plot_data = collections.defaultdict(list) for example in client_data[f'client_{i}']: images, labels = example #label = labels.numpy() plot_data[label].append(labels) for i in range(6): plt.subplot(2, 3, i+1) plt.title('Client {}'.format(i)) for j in range(10): plt.hist( plot_data[j], density=False, bins=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])如何修改这段代码使之正确
时间: 2023-06-08 16:07:31 浏览: 64
这段代码用于创建一个名为"f"的图形对象,大小为12x7,然后设置图形对象的标题为"Label Counts for a Sample of Clients"。接着定义了一个名为"client_data"的有序字典,并使用循环语句将六个客户端的数据存储到其中。每个客户端的数据包括1000个图像样本和它们对应的标签。最后,还定义了一个名为"plot_data"的默认字典,并将每个客户端的图像和标签数据存储到该字典中。
相关问题
f = plt.figure(figsize=(12, 7)) f.suptitle('Label Counts for a Sample of Clients') for i in range(6): client_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[i]) plot_data = collections.defaultdict(list) for example in client_dataset: # Append counts individually per label to make plots # more colorful instead of one color per plot. label = example['label'].numpy() plot_data[label].append(label) plt.subplot(2, 3, i+1) plt.title('Client {}'.format(i)) for j in range(10): plt.hist( plot_data[j], density=False, bins=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])该段代码的作用
这段代码是用来展示一个客户样本的标签数量。代码中定义了一个名为“f”的图像对象,并且设置了图片的尺寸为(12,7)。接着,定义了图片的标题为“一组客户标签数量”。然后使用for循环遍历了6个客户端ID,并在其中获取了每个客户的数据集,并将数据集中每个示例的标签计数保存在plot_data字典中。
当使用本地的fashionmnis时,如何修改以下代码:f = plt.figure(figsize=(12, 7)) f.suptitle('Label Counts for a Sample of Clients') for i in range(6): client_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[i]) plot_data = collections.defaultdict(list) for example in client_dataset: # Append counts individually per label to make plots # more colorful instead of one color per plot. label = example['label'].numpy() plot_data[label].append(label) plt.subplot(2, 3, i+1) plt.title('Client {}'.format(i)) for j in range(10): plt.hist( plot_data[j], density=False, bins=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
如果使用本地的fashionmnis,要修改以下代码可以按照如下方式操作:
1. 修改数据集的名称,如将“emnist_train”改为“fashionmnist_train”。
2. 修改suptitle的内容,如将“Label Counts for a Sample of Clients”改为“客户样本的标签计数”。
3. 修改for循环中的range,以适应fashionmnis数据集中的客户数量。
4. 将client_dataset中的“emnist_train”换成“fashionmnist_train”。
5. 根据fashionmnis的标签格式修改plot_data的内容,以便正确绘制标签计数。
示例代码如下:
f = plt.figure(figsize=(12, 7))
f.suptitle('客户样本的标签计数')
for i in range(10):
client_dataset = fashionmnist_train.create_tf_dataset_for_client(
fashionmnist_train.client_ids[i])
plot_data = collections.defaultdict(list)
for example in client_dataset:
label = example['label'].numpy()
plot_data[label].append(example)
plot_label_counts(plot_data) #自行定义plot_label_counts函数,用于绘制标签计数图。
阅读全文