yield [np.array(value, dtype=np.float32, ndmin=2)]
时间: 2023-12-03 20:02:37 浏览: 96
这段代码是使用 Python 的生成器函数 yield 返回一个包含 np.array 的列表。np.array() 是用于创建 NumPy 数组的函数,它将 value 转换为一个 NumPy 数组,并指定数据类型为 np.float32,ndmin=2 表示将数组的维度设置为至少为 2。最终,这个生成器函数会返回一个包含一个 NumPy 数组的列表。这个列表可以在程序的其他地方进行处理和使用。
相关问题
def spiral_search(center, radius, step): x, y = center yield x, y for r in range(1, radius + step, step): for i, (dx, dy) in enumerate(((1, 0), (0, 1), (-1, 0), (0, -1))): for j in range(r - (i % 2)): x += dx y += dy yield x, y # 定义建筑物遮蔽区域提取函数 def extract_building_shadow(image, dsm, ground_spacing, radius): shadow_mask = np.zeros_like(image, dtype=np.bool) for i in range(0, image.shape[0], ground_spacing): for j in range(0, image.shape[1], ground_spacing): if not shadow_mask[i, j]: center = (i, j) ground_height = dsm[i, j] for x, y in spiral_search(center, radius, ground_spacing): if x < 0 or x >= image.shape[0] or y < 0 or y >= image.shape[1]: continue if np.any(shadow_mask[x, y]): continue height = dsm[x, y] if height > ground_height: shadow_mask[x, y] = True elif height == ground_height: if np.linalg.norm(np.array([x, y]) - np.array(center)) < \ np.linalg.norm(np.array([i, j]) - np.array(center)): shadow_mask[x, y] = True return shadow_mask这段代码怎么改避免以下错误The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
这个错误通常是由于在条件语句中使用了多个元素的数组而导致的。可以使用 `np.all()` 或 `np.any()` 函数来解决这个问题。在这段代码中,可以将 `if not shadow_mask[i, j]:` 改为 `if not np.any(shadow_mask[i, j]):`,将 `if np.any(shadow_mask[x, y]):` 改为 `if np.any(shadow_mask[x:x+1, y:y+1]):`。修改后的代码如下:
```
def extract_building_shadow(image, dsm, ground_spacing, radius):
shadow_mask = np.zeros_like(image, dtype=np.bool)
for i in range(0, image.shape[0], ground_spacing):
for j in range(0, image.shape[1], ground_spacing):
if not np.any(shadow_mask[i, j]):
center = (i, j)
ground_height = dsm[i, j]
for x, y in spiral_search(center, radius, ground_spacing):
if x < 0 or x >= image.shape[0] or y < 0 or y >= image.shape[1]:
continue
if np.any(shadow_mask[x:x+1, y:y+1]):
continue
height = dsm[x, y]
if height > ground_height:
shadow_mask[x, y] = True
elif height == ground_height:
if np.linalg.norm(np.array([x, y]) - np.array(center)) < \
np.linalg.norm(np.array([i, j]) - np.array(center)):
shadow_mask[x, y] = True
return shadow_mask
```
def spiral_search(center, radius, step): x, y = center yield x, y for r in range(1, radius + step, step): for i, (dx, dy) in enumerate(((1, 0), (0, 1), (-1, 0), (0, -1))): for j in range(r - (i % 2)): x += dx y += dy yield x, y output_path = 'C:\yingxiang\mask.png' def extract_building_shadow(image, dsm, ground_spacing, radius): shadow_mask = np.zeros_like(image, dtype=np.bool) for i in range(0, image.shape[0], ground_spacing): for j in range(0, min(image.shape[1], i+ground_spacing), ground_spacing): if not np.any(shadow_mask[i, j]): center = (i, j) ground_height = dsm[i, j] for x, y in spiral_search(center, radius, ground_spacing): if x < 0 or x >= image.shape[0] or y < 0 or y >= image.shape[1]: continue if np.any(shadow_mask[x, y:]): continue height = dsm[x, y] if height > ground_height: shadow_mask[x, y] = True elif height == ground_height: if np.linalg.norm(np.array([x, y]) - np.array(center)) < \ np.linalg.norm(np.array([i, j]) - np.array(center)): shadow_mask[x, y] = True cv2.imwrite(output_path, shadow_mask.astype(np.uint8) * 255) return shadow_mask image = cv2.imread('C:\yingxiang\DJI_20230322140516_0026_V.JPG') dsm_path = 'C:/sanwei/jianmo/Productions/Production_2/Production_2_DSM_part_2_2.tif' dsm_dataset = gdal.Open(dsm_path) extract_building_shadow(image, dsm_dataset.ReadAsArray(), 10, 10)在这段代码中,想要螺旋扫描是针对dsm图像进行扫描应该怎么改
要想螺旋扫描是针对dsm图像进行扫描,需要将参数中的center改为dsm图像中的像素坐标,即将以下这行代码:
```
center = (i, j)
```
修改为:
```
center = (i, j, dsm[i, j])
```
然后在spiral_search函数中,需要在yield语句前加上z,表示第三个维度,即高度:
```
x, y, z = center
yield x, y, z
```
然后在循环体中,仅需要在height的赋值语句中,将dsm数组的第三维度也加上即可:
```
height = dsm[x, y, z]
```
最后在调用spiral_search函数时,需要将第一个参数改成三元组,即(dsm中某个像素的行号, dsm中某个像素的列号, 0)。
阅读全文