python int hex_array.append
时间: 2023-10-05 15:09:58 浏览: 120
`hex_array` 是一个列表,`append()` 是列表对象的方法,用于将一个元素添加到列表的末尾。`int` 是 Python 内置类型之一,表示整数。`hex()` 是 Python 内置函数之一,用于将一个整数转换为十六进制字符串。
如果你想将一个十六进制字符串的每个字符都转换为整数并添加到 `hex_array` 列表中,可以使用以下代码:
```
hex_str = '1a2b3c'
hex_array = []
for c in hex_str:
hex_array.append(int(c, 16))
```
在这个例子中,我们遍历了字符串中的每个字符,并将其转换为一个整数。`int()` 函数的第二个参数指定了要使用的进制,这里是 16,表示使用十六进制。
如果你想将一个整数的每个十六进制数字都添加到 `hex_array` 列表中,可以使用以下代码:
```
num = 0x1a2b3c
hex_array = []
while num > 0:
hex_array.append(num % 16)
num //= 16
hex_array.reverse()
```
在这个例子中,我们使用了一个循环来将整数转换为十六进制数字。`%` 运算符用于获取整数的余数,`//` 运算符用于获取整数的商。最后,我们使用 `reverse()` 方法将列表中的元素反转,使其按照正确的顺序排列。
相关问题
将这段代码转为python const timestamp = Date.now(); const userid = 0; const securityKey = Math.floor(1e8 * Math.random()); const i = `${timestamp}:${userid}:${securityKey}`; let list = []; const e = encodeURI(i); for(let i=0; i<e.length; i++) { list.push(e.charCodeAt(i)); } list = new Uint8Array(list); const a = [68, 107, 79, 108, 105, 87, 118, 70, 78, 82, 55, 67, 52, 87, 118, 82]; // const a = [51, 80, 77, 71, 82, 81, 79, 50, 57, 69, 51, 54, 73, 68, 72, 56]; const b = new Uint8Array([71, 81, 87, 75, 85, 69, 50, 67, 86, 71, 79, 79, 66, 75, 88, 85]); const key = new Uint8Array(a); const aesCfb = new aesjs.ModeOfOperation.cfb(key, b); const encryptedBytes = aesCfb.encrypt(list); const token = aesjs.utils.hex.fromBytes(encryptedBytes); return { timestamp, userid, securityKey, token };
```python
import time
import random
import aes
import binascii
timestamp = int(time.time() * 1000)
userid = 0
securityKey = random.randint(0, 99999999)
i = f"{timestamp}:{userid}:{securityKey}"
list = []
e = i.encode('utf-8').decode('unicode-escape')
for char in e:
list.append(ord(char))
list = bytes(list)
a = [68, 107, 79, 108, 105, 87, 118, 70, 78, 82, 55, 67, 52, 87, 118, 82]
b = bytes([71, 81, 87, 75, 85, 69, 50, 67, 86, 71, 79, 79, 66, 75, 88, 85])
key = bytes(a)
aesCfb = aes.ModeOfOperationCFB(key, b)
encryptedBytes = aesCfb.encrypt(list)
token = binascii.hexlify(encryptedBytes).decode()
return {
'timestamp': timestamp,
'userid': userid,
'securityKey': securityKey,
'token': token
}
```
DWT-SVD python
### 使用Python实现DWT-SVD数字水印技术
#### 实现概述
为了在Python中实现基于离散小波变换(DWT)和奇异值分解(SVD)的数字水印嵌入与提取,可以利用`PyWavelets`库来处理DWT操作,并使用NumPy来进行线性代数运算。此方法能够有效地将水印信息嵌入到宿主图像中而不明显破坏其质量。
#### 安装所需库
首先安装必要的Python包:
```bash
pip install pywavelets numpy opencv-python matplotlib scikit-image
```
这些工具提供了执行DWT、矩阵运算以及读取/显示图像的功能。
#### 导入库并定义函数
下面展示了一个简单的框架,用于完成基本的DWT+SVD水印嵌入流程[^1]。
```python
import cv2
import numpy as np
from skimage import img_as_float
import pywt
def embed_watermark(host_image_path, watermark_text):
"""
将文本水印嵌入给定图片路径指向的主机图像.
参数:
host_image_path (str): 主机图像文件的位置.
watermark_text (str): 要嵌入的文字字符串形式的水印.
返回:
tuple: 含有已嵌入水印的新图像数组及其对应的浮点型版本.
"""
# 加载灰度模式下的主机图像
original_img = cv2.imread(host_image_path, cv2.IMREAD_GRAYSCALE)
float_original_img = img_as_float(original_img).astype(np.float64)
# 对图像进行二维离散小波变换
coeffs = pywt.dwt2(float_original_img, 'haar')
LL, (LH, HL, HH) = coeffs
U_svd, sigma_svd, Vh_svd = np.linalg.svd(LL, full_matrices=False)
# 创建一个二进制表示法的水印向量
binary_wm = ''.join([format(ord(char), '08b') for char in watermark_text])
wm_bits = list(map(int, list(binary_wm)))
min_sigma = min(sigma_svd[sigma_svd != 0]) * 0.1
max_sigma = max(sigma_svd) * 10
modified_sigmas = []
index = 0
for sig_val in sigma_svd:
if index < len(wm_bits):
bit_to_embed = wm_bits[index]
if bit_to_embed == 1 and sig_val >= 0:
new_value = min(sig_val + min_sigma, max_sigma)
elif bit_to_embed == 0 and sig_val <= 0:
new_value = max(sig_val - min_sigma, -max_sigma)
else:
new_value = sig_val
modified_sigmas.append(new_value)
index += 1
else:
modified_sigmas.append(sig_val)
reconstructed_LL = U_svd @ np.diag(modified_sigmas) @ Vh_svd
watermarked_coeffs = (reconstructed_LL, (LH, HL, HH))
watermarked_image = pywt.idwt2(watermarked_coeffs, 'haar')
return watermarked_image.clip(0., 1.), float_original_img
def extract_watermark(embedded_image_array, length_of_watermark=32):
"""从含有水印的图像中恢复出之前嵌入的信息."""
embedded_float_img = img_as_float(embedded_image_array.astype('uint8'))
coeffs = pywt.dwt2(embedded_float_img, 'haar')
LL, _ = coeffs
_, sigma_extracted, __ = np.linalg.svd(LL, full_matrices=False)
extracted_bits = []
prev_sign = None
count_same_signs = 0
for val in sigma_extracted[:length_of_watermark]:
current_sign = int(val > abs(prev_sign)) if prev_sign is not None else 0
if current_sign == prev_sign or prev_sign is None:
count_same_signs += 1
else:
extracted_bits.extend(['1']*(count_same_signs//2)+['0']*int((count_same_signs%2)>0))
count_same_signs = 1
prev_sign = current_sign
final_bit_string = "".join(extracted_bits)[:len("".join(format(ord(c), "08b") for c in "example"))]
try:
decoded_message = bytes.fromhex(hex(int(final_bit_string, base=2))[2:]).decode()
except Exception as e:
print(f"Error during decoding: {e}")
decoded_message = ""
return decoded_message.strip()
if __name__ == "__main__":
path_to_host_image = './path/to/host/image.png'
secret_msg = "HelloWorld"
watermarked_img, orig_img = embed_watermark(path_to_host_image, secret_msg)
recovered_msg = extract_watermark(watermarked_img, len(secret_msg)*8)
print(f"Original Message: '{secret_msg}'\nRecovered Message: '{recovered_msg}'")
```
这段代码展示了如何通过修改低频子带LL内的奇异值来隐秘地携带消息数据。注意这里简化了一些细节以便更好地理解概念;实际应用可能还需要考虑更多因素如鲁棒性和不可感知性的优化等问题[^2]。
阅读全文