在VGG网络中,如果想要在卷积层后添加批量归一化层,该如何修改
时间: 2023-12-13 10:02:42 浏览: 96
vgchange命令 修改卷组属性
在VGG网络中,在卷积层后添加批量归一化层的方法如下:
1. 首先,需要在导入PyTorch库之前,导入torch.nn.functional库,用于使用函数式API调用批量归一化层。
```python
import torch.nn.functional as F
```
2. 然后,在VGG网络中的卷积层后添加批量归一化层。以VGG16为例,在其定义中,可以在每个卷积层后添加一个BatchNorm2d层:
```python
import torch.nn as nn
class VGG16(nn.Module):
def __init__(self, num_classes=1000):
super(VGG16, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512), # <-- 在这里添加 BatchNorm2d 层
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
```
在上述代码中,每个卷积层后都添加了一个BatchNorm2d层,可以看到在每个卷积层之后都添加了`nn.BatchNorm2d`层,这样就实现了在VGG网络中的卷积层后添加批量归一化层的操作。
阅读全文