bbc分类 python代码
时间: 2023-05-30 11:03:54 浏览: 156
以下是使用Python对BBC新闻进行分类的示例代码:
1. 安装必要的库
```python
!pip install pandas nltk sklearn
```
2. 导入库
```python
import pandas as pd
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
```
3. 加载数据
```python
data = pd.read_csv('bbc_news.csv')
```
4. 创建停用词列表
```python
stop_words = stopwords.words('english')
```
5. 创建词形还原器
```python
lemmatizer = WordNetLemmatizer()
```
6. 对文本进行预处理
```python
def preprocess_text(text):
# 将文本转换为小写
text = text.lower()
# 去除标点符号
text = ''.join([char for char in text if char.isalpha() or char == ' '])
# 分词
tokens = nltk.word_tokenize(text)
# 去除停用词
tokens = [token for token in tokens if token not in stop_words]
# 词形还原
tokens = [lemmatizer.lemmatize(token) for token in tokens]
# 将词列表转换为字符串
preprocessed_text = ' '.join(tokens)
return preprocessed_text
data['text'] = data['text'].apply(preprocess_text)
```
7. 将文本转换为TF-IDF向量
```python
tfidf_vectorizer = TfidfVectorizer()
tfidf = tfidf_vectorizer.fit_transform(data['text'])
```
8. 将数据集分成训练集和测试集
```python
X_train, X_test, y_train, y_test = train_test_split(tfidf, data['category'], test_size=0.2, random_state=42)
```
9. 训练朴素贝叶斯分类器
```python
naive_bayes = MultinomialNB()
naive_bayes.fit(X_train, y_train)
```
10. 预测测试集
```python
y_pred = naive_bayes.predict(X_test)
```
11. 计算准确率
```python
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
以上就是对BBC新闻进行分类的Python代码。
阅读全文