def forward(self, x, state=None, flow=None, mode='bilinear'): # pylint: disable=unused-argument, arguments-differ # Check size assert len(x.size()) == 5, 'Input tensor must be BxTxCxHxW.' b, timesteps, c, h, w = x.size() assert c == self.input_size, f'feature sizes must match, got input {c} for layer with size {self.input_size}' # recurrent layers rnn_output = [] rnn_state = torch.zeros(b, self.hidden_size, h, w, device=x.device) if state is None else state for t in range(timesteps): x_t = x[:, t] if flow is not None: rnn_state = warp_features(rnn_state, flow[:, t], mode=mode) # propagate rnn state rnn_state = self.gru_cell(x_t, rnn_state) rnn_output.append(rnn_state) # reshape rnn output to batch tensor return torch.stack(rnn_output, dim=1)这段代码的计算过程
时间: 2024-02-14 12:22:46 浏览: 122
这段代码实现了一个带有 GRU 循环神经网络的前向传播过程。输入张量 x 的维度为 BxTxCxHxW,其中 B 是批大小,T 是时间步数,C 是通道数,H 和 W 分别是张量的高度和宽度。该函数首先会检查输入张量的维度是否正确。
接下来,函数会初始化 GRU 循环神经网络的状态 rnn_state。如果输入参数 state 不为空,则将其作为初始状态;否则,将状态初始化为全零张量。
接着,函数会遍历时间步,每次取出输入张量 x 中的一个时间步 x_t。如果输入参数 flow 不为空,则使用 warp_features 函数对 rnn_state 进行变形,变形的方式由参数 mode 决定。
然后,函数将 x_t 和 rnn_state 作为 GRU 循环神经网络的输入,计算得到 rnn_state。将 rnn_state 添加到 rnn_output 列表中。
最后,函数将 rnn_output 列表中的张量沿着时间步维度进行堆叠,得到输出张量。输出张量的维度为 BxTxCxHxW。
相关问题
def forward(self, x, flow, scale): if scale != 1: x = F.interpolate(x, scale_factor = 1. / scale, mode="bilinear", align_corners=False) if flow != None: flow = F.interpolate(flow, scale_factor = 1. / scale, mode="bilinear", align_corners=False) * 1. / scale x = torch.cat((x, flow), 1) x = self.conv0(x) x = self.convblock(x) + x tmp = self.lastconv(x) tmp = F.interpolate(tmp, scale_factor = scale * 2, mode="bilinear", align_corners=False) flow = tmp[:, :4] * scale * 2 mask = tmp[:, 4:5] return flow, mask翻译代码
这段代码是一个神经网络模型的前向传播函数。它接受三个输入参数:x,flow和scale。根据scale的值是否等于1,对输入x进行插值操作,将其缩放到1/scale的尺寸。如果flow不为None,则对其进行同样的插值操作,并将其缩放到1/scale的尺寸后与x进行拼接。接下来,将拼接后的结果传入conv0进行卷积操作,然后经过convblock进行卷积操作,并将其与x相加。然后,将结果传入lastconv进行卷积操作得到tmp。对tmp再次进行插值操作,将其缩放到scale乘以2的尺寸。最后,取出tmp中的前四列数据,乘以scale乘以2得到flow,并取出tmp中的第5列数据得到mask。函数返回flow和mask作为输出结果。
def postprocess_tens(tens_orig_l, out_ab, mode='bilinear'): # tens_orig_l 1 x 1 x H_orig x W_orig # out_ab 1 x 2 x H x W HW_orig = tens_orig_l.shape[2:] HW = out_ab.shape[2:] # call resize function if needed if(HW_orig[0]!=HW[0] or HW_orig[1]!=HW[1]): out_ab_orig = F.interpolate(out_ab, size=HW_orig, mode='bilinear') else: out_ab_orig = out_ab out_lab_orig = torch.cat((tens_orig_l, out_ab_orig), dim=1) return color.lab2rgb(out_lab_orig.data.cpu().numpy()[0,...].transpose((1,2,0)))
这段代码实现了一个将颜色信息从 Lab 颜色空间转换到 RGB 颜色空间的函数。具体来说,输入参数 `tens_orig_l` 表示原始图像的亮度通道,是一个形状为 `(1, 1, H_orig, W_orig)` 的张量,其中 `H_orig` 和 `W_orig` 分别是原始图像的高和宽。输入参数 `out_ab` 表示预测得到的颜色信息,是一个形状为 `(1, 2, H, W)` 的张量,其中第一个维度表示有两个通道,分别是 a 和 b 通道;`HW` 表示 `out_ab` 的高和宽。
函数首先判断 `out_ab` 是否需要进行大小调整,如果需要,则调用 `F.interpolate` 进行双线性插值;否则直接使用 `out_ab`。接着,将 `tens_orig_l` 和 `out_ab_orig` 沿着第二个维度拼接起来,得到一个形状为 `(1, 3, H_orig, W_orig)` 的张量 `out_lab_orig`。最后,调用 `color.lab2rgb` 将 `out_lab_orig` 转换成形状为 `(H_orig, W_orig, 3)` 的 RGB 图像,并返回这个图像。
阅读全文