有没有MATLAB的混沌粒子群优化算法代码
时间: 2023-11-04 07:07:13 浏览: 138
是的,MATLAB有混沌粒子群优化算法的代码。以下是一个简单的实现示例:
```matlab
function [x, fval] = cpsowl(fitnessfcn, dim, options)
% CPSO with logistic map
% fitnessfcn: objective function
% dim: number of decision variables
% options: CPSO options
% x: global optimal solution
% fval: global optimal value
% Set default options
defaultoptions = struct('PopulationSize', 20, 'MaxGenerations', 100, ...
'InertiaWeight', 0.7298, 'SelfAdjustmentWeight', 1.496, ...
'SocialAdjustmentWeight', 1.496, 'ConstrictionFactor', 0.7298, ...
'Tolerance', 1e-6, 'Display', 'off');
% Merge user options with default options
if nargin < 3
options = struct();
end
options = mergeoptions(defaultoptions, options);
% Initialize CPSO parameters
n = options.PopulationSize;
maxgen = options.MaxGenerations;
w = options.InertiaWeight;
c1 = options.SelfAdjustmentWeight;
c2 = options.SocialAdjustmentWeight;
phi = c1 + c2;
chi = 2 / abs(2 - phi - sqrt(phi^2 - 4*phi));
constriction = options.ConstrictionFactor * chi;
tol = options.Tolerance;
display = options.Display;
% Initialize population
x = rand(n, dim); % random initial positions
v = zeros(n, dim); % zero initial velocities
p = x; % personal best positions
fp = feval(fitnessfcn, p); % personal best values
[gfp, g] = min(fp); % global best position and value
% Main loop
for t = 1 : maxgen
% Update velocity and position
r1 = rand(n, dim);
r2 = rand(n, dim);
v = constriction * (w*v ...
+ c1*r1.*(p - x) ...
+ c2*r2.*(repmat(gfp, n, 1) - x));
x = x + v;
% Apply logistic map to position and velocity
r = rand(n, dim);
a = 4;
b = 3.5699456;
x = a * x .* (1 - x);
v = b * v .* (1 - v) .* r;
% Update personal best and global best
fx = feval(fitnessfcn, x);
improve = fx < fp;
p(improve, :) = x(improve, :);
fp(improve) = fx(improve);
[improve, gf] = min(fp);
if gf < gfp
gfp = gf;
g = improve;
end
% Check for convergence
if gfp < tol
break;
end
% Display progress
if strcmp(display, 'iter')
fprintf('Generation %d, Best Fitness: %g\n', t, gfp);
end
end
% Return global best solution and value
x = p(g, :);
fval = gfp;
end
function options = mergeoptions(defaultoptions, options)
% Merge user options with default options
if isempty(options)
options = struct();
end
optionnames = fieldnames(defaultoptions);
for i = 1 : length(optionnames)
optionname = optionnames{i};
if ~isfield(options, optionname)
options.(optionname) = defaultoptions.(optionname);
end
end
end
```
请注意,此代码是一种简单的实现,可能需要进行修改以满足您的特定需求。
阅读全文