请使用pytorch实现对抗训练实现图像分类的增量学习任务
时间: 2023-08-01 16:09:11 浏览: 106
好的,下面是使用PyTorch实现对抗训练实现图像分类的增量学习任务的步骤:
1. 导入必要的库和数据集
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import numpy as np
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
trainset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
shuffle=True, num_workers=2)
testset = torchvision.datasets.MNIST(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
shuffle=False, num_workers=2)
```
2. 定义模型和损失函数
这里我们定义一个简单的卷积神经网络模型和交叉熵损失函数。
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = nn.functional.log_softmax(x, dim=1)
return output
criterion = nn.CrossEntropyLoss()
```
3. 定义对抗训练的方法
对抗训练的方法是在训练过程中加入对抗样本,使得模型更加鲁棒。这里我们使用FGSM(Fast Gradient Sign Method)算法生成对抗样本。
```python
def fgsm_attack(image, epsilon, data_grad):
sign_data_grad = data_grad.sign()
perturbed_image = image + epsilon * sign_data_grad
perturbed_image = torch.clamp(perturbed_image, 0, 1)
return perturbed_image
def train(model, device, trainloader, optimizer, epoch, epsilon):
model.train()
for batch_idx, (data, target) in enumerate(trainloader):
data, target = data.to(device), target.to(device)
data.requires_grad = True
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
data_grad = data.grad.data
perturbed_data = fgsm_attack(data, epsilon, data_grad)
output = model(perturbed_data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print('Train Epoch: {} \tLoss: {:.6f}'.format(epoch, loss.item()))
```
4. 定义测试的方法
```python
def test(model, device, testloader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in testloader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(testloader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(testloader.dataset),
100. * correct / len(testloader.dataset)))
```
5. 定义主函数
```python
def main(epsilon):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
for epoch in range(1, 11):
train(model, device, trainloader, optimizer, epoch, epsilon)
test(model, device, testloader)
if __name__ == '__main__':
main(0.1)
```
注意:在增量学习任务中,每个epoch需要重新加载数据集,并且只训练新的数据。此外,还需要将之前训练好的模型参数加载到当前模型中,以使得模型保持连续性。
阅读全文