帮我翻译3.Power steering pump 4.Pressure tube 1.Fluid lines 7.Pinion gear 6.Rack 2.Rotary control valve 5.Tie rod 8.Hydraulic piston

时间: 2023-04-01 09:03:41 浏览: 89
1. Fluid lines:液压管路 2. Rotary control valve:旋转控制阀 3. Power steering pump:动力转向泵 4. Pressure tube:压力管 5. Tie rod:连杆 6. Rack:齿条 7. Pinion gear:小齿轮 8. Hydraulic piston:液压活塞
相关问题

ax.plot( Xs, [0] * FLAGS.data_length, 'b', lw=3, alpha=0.5, label='steering')

### 回答1: 我不知道怎么回答这个问题,但是我可以尝试解释 Xs, b, lw, alpha, label 和 FLAGS.data_length 这些参数的含义。Xs 代表 x 轴的数据,[0] * FLAGS.data_length 代表 y 轴的数据,b 代表图表的粗细,lw 代表线宽,alpha 代表透明度,label 代表图表的标签,而 FLAGS.data_length 代表数据长度。 ### 回答2: 这段代码是使用matplotlib库中的plot函数绘制图形,并设置了一些参数。具体解释如下: 1. ax.plot:表示使用ax对象调用plot函数进行绘图操作。 2. Xs:表示横坐标的数据,它是一个一维数组或列表。 3. [0] * FLAGS.data_length:表示纵坐标的数据,由0重复FLAGS.data_length次构成,即纵坐标全为0。 4. 'b':表示线条的颜色,这里的'b'代表蓝色。 5. lw=3:表示线条的宽度,这里设置为3个像素。 6. alpha=0.5:表示线条的透明度,这里设置为0.5,即半透明。 7. label='steering':表示给线条添加标签,这里的标签为'steering',用于图例的显示。 综上所述,这段代码的作用是绘制一条蓝色的线条,线条在横坐标Xs上,纵坐标全为0,线条宽度为3像素,透明度为0.5,同时添加了标签'steering'。 ### 回答3: 这段代码是用来绘制一个线性图形。函数`ax.plot`用于将给定的数据绘制为一个图形,并可以选择不同的样式和属性进行定制。 其中,`Xs`是要绘制的数据点的横坐标,`[0] * FLAGS.data_length`是纵坐标,表示所有数据点的纵坐标都为0。这意味着绘制的是一条直线,纵坐标始终为0。 参数`'b'`表示绘制的线条颜色为蓝色(blue),`lw=3`表示线的宽度为3个单位,`alpha=0.5`表示线的透明度为0.5。此外,`label='steering'`是添加一个图例,标识该线条为"steering"。 综上所述,这段代码的作用是在一个坐标系上绘制一条蓝色直线,所有数据点的纵坐标为0,线宽为3个单位,透明度为0.5,并添加一个图例标识为"steering"。

global_planner_params.yaml参考文件

# Global Planner Parameters # maximum distance to the goal point goal_distance_tolerance: 0.1 # maximum allowed numerical error for goal position xy_goal_tolerance: 0.2 # maximum allowed numerical error for goal orientation yaw_goal_tolerance: 0.3 # weight for the heuristic function used in the A* algorithm # higher values prefer straighter paths, lower values prefer paths with less turning heuristic_weight: 3.0 # minimum distance to travel before attempting to replan min_replan_distance: 1.0 # minimum amount of time to wait before attempting to replan min_replan_time: 1.0 # tolerance on the robot's heading (in radians) when planning # during rotation commands this is an additional error that gets added to # yaw_goal_tolerance heading_lookahead: 0.325 # minimum lookahead to do during path planning. A shorter lookahead is more # cautious (especially in tight spaces) but may be more effective at avoiding # collisions with complex obstacles min_lookahead_distance: 0.4 # maximum lookahead to do during path planning max_lookahead_distance: 2.0 # if true, the global planner will only plan one step at a time # rather than to the final goal state intermediate_planning: false # what topic the planner should use for status feedback planner_frequency: 0.5 planner_topic: "planner_status" # how close the robot must be to the global plan before updating it with # a new one plan_update_distance: 0.5 # how often the planner should be allowed to make new plans. A value of 0 # means plans will be made as often as possible planner_patience: 5.0 # penalty for robot rotation during path planning. A higher penalty will # cause the planner to prefer straighter paths with less turns rotation_penalty: 0.8 # maximum absolute rotation speed allowed while navigating along the global # plan max_rotation_speed: 1.0 # maximum speed to travel along the global plan max_velocity: 0.6 # If true, the global planner will try to avoid obstacles with a combination # of steering and braking. Otherwise, it will only steer around obstacles braking_enabled: true # how many times to retry a goal update if the previous attempt resulted in a # collision or other error. # If set to -1, it will retry indefinitely goal_update_retries: 3 # Whether or not to use the extrinsic rotation control method in the planner use_extrinsic_rotation: true # Enabling this parameter causes the global planner to use # differential constraints for smoother trajectories use_differential_constraints: true # Enabling this parameter causes the planner to assume the # robot is driving on the right-hand side of the street drive_on_right: true # Timeout for the planning process (in seconds). If planning takes longer # than this, the planner will abort and return a failure status planning_timeout: 5.0 # If set, this parameter limits the maximum planning distance the # planner will use. Set to -1 for no limit. max_planning_distance: -1 # Enabling this parameter causes the planner to ignore the robot's ground # clearance when planning. ignore_ground_clearance: false # Whether the planner should try to avoid going backwards avoid_going_backwards: false # The maximum distance (in meters) that the planner will consider changing # the orientation of the robot to better follow the path. Set to -1 to # disable this behavior. max_orientation_change: 0.9 # The minimum distance (in meters) that the planner will consider # detecting a change in orientation of the robot to better follow the path. # Set to -1 to disable this behavior. min_orientation_change: 0.5 # Whether the planner should attempt to use the current local plan when planning. # If set to true, the planner will attempt to connect the current local plan # to the new plan. If set to false, the planner will always start from the robot's # current pose. use_local_plan: true # Whether the planner should attempt to use the current local costmap when planning. # If set to true, the planner will use the local costmap to build an estimate # of the robot's surroundings. If set to false, the planner will only use the # global costmap. use_local_costmap: true # Whether the planner should use the old behavior of setting waypoints to # the right of the global plan. This behavior causes the robot to execute # the plan with a rightward shift. However, it can be problematic if the plan # encounters obstacles on the left side. use_typical_rightward_shift: false # Whether the planner should use a zero velocity as a way to avoid oscillations. # If set to true, the planner will stop the robot and wait for the current goal # to either become unreachable or within the goal tolerance. stop_when_goal_rejected: false # The time (in seconds) that the planner will stop and wait (in case of oscillations) # before trying to replan. stop_and_wait_time: 2.0 # Distance (in meters) to be left before the end of the path. This can be useful # when the robot should stop at a certain distance from the goal pose. path_distance_offset: 0 # Maximum allowed speed deviation from the global plan (in m/s). max_allowed_speed_deviation: 1.0 # Maximum allowed angular deviation from the global plan (in rad). max_allowed_angular_deviation: 1.57 # Whether or not to use a linear navigation function to bias global plan costs toward closer parts of the map. use_linear_navigation_function: false # Whether or not to use a terrain independent cost scale to bias global plan costs toward flatter regions. use_terrain_independent_cost_scale: true # The maximum number of obstacles to check against during planning. max_obstacle_check_count: 500 # If true, the planner will skip planning during the first update cycle after initialization. skip_initial_planning: false # Scaling factor for the distances used in the Adaptive Sampling Path algorithm as_scaler: 1.0 # The maximum length of the Adaptive Sampling Path segments as_max_segment_length: 1.0 # The turning radius for the robot used in the prediction step of the Adaptive Sampling Path algorithm as_robot_radius: 0.3 # The number of areas forward used for heading smoothing in the Adaptive Sampling Path algorithm. # Set to 0 if heading smoothing is not desired. as_heading_smoothing_areas: 0 # The maximum distance the Adaptive Sampling Path algorithm will plan for. # Set to -1 for no limit. as_max_global_plan_distance: -1 # How many layers of costmaps to plan in. A higher value will allow the global # planner to take into account more layers of static and dynamic obstacles. # 0 means only use the base global costmap. planning_layers: 0

相关推荐

最新推荐

recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

setuptools-34.0.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.