DANN 自定义数据集 python
时间: 2023-07-08 10:54:43 浏览: 163
【深度域适配】二、利用DANN实现MNIST和MNIST-M数据集迁移训练
5星 · 资源好评率100%
首先,需要先导入相应的库:tensorflow、keras、numpy、os、cv2等。然后,需要准备好自定义的数据集,包括正样本和负样本,并将它们分别存储在不同的文件夹中。接下来,需要对数据集进行预处理,包括图像大小统一、归一化、随机翻转等。之后,需要将数据集划分为训练集和验证集,可以使用train_test_split函数来实现。最后,可以使用keras中的DANN模型进行训练和测试。
具体的代码实现可以参考以下步骤:
1. 导入相关库
```python
import tensorflow as tf
from tensorflow import keras
import numpy as np
import os
import cv2
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
```
2. 准备数据集
```python
# 定义数据集路径
data_path = './data'
train_path = os.path.join(data_path, 'train')
test_path = os.path.join(data_path, 'test')
# 定义图像大小
img_width, img_height = 32, 32
# 定义类别列表
classes = ['cat', 'dog']
# 加载数据集
train_data = []
train_labels = []
test_data = []
test_labels = []
for cls in classes:
# 加载训练集
train_cls_path = os.path.join(train_path, cls)
for file in os.listdir(train_cls_path):
img_path = os.path.join(train_cls_path, file)
img = cv2.imread(img_path)
img = cv2.resize(img, (img_width, img_height))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
train_data.append(img)
train_labels.append(cls)
# 加载测试集
test_cls_path = os.path.join(test_path, cls)
for file in os.listdir(test_cls_path):
img_path = os.path.join(test_cls_path, file)
img = cv2.imread(img_path)
img = cv2.resize(img, (img_width, img_height))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
test_data.append(img)
test_labels.append(cls)
```
3. 数据预处理
```python
# 将图像数据转换为numpy数组
train_data = np.array(train_data)
test_data = np.array(test_data)
# 将标签数据进行编码
label_encoder = LabelEncoder()
train_labels = label_encoder.fit_transform(train_labels)
test_labels = label_encoder.transform(test_labels)
# 将图像数据进行归一化
train_data = train_data.astype('float32') / 255.
test_data = test_data.astype('float32') / 255.
# 将标签数据转换为one-hot编码
num_classes = len(classes)
train_labels = keras.utils.to_categorical(train_labels, num_classes)
test_labels = keras.utils.to_categorical(test_labels, num_classes)
# 随机翻转图像
train_data = tf.image.random_flip_left_right(train_data)
```
4. 划分训练集和验证集
```python
train_data, val_data, train_labels, val_labels = train_test_split(train_data, train_labels, test_size=0.2, random_state=42)
```
5. 定义DANN模型
```python
# 定义DANN模型
input_shape = (img_width, img_height, 3)
input_img = keras.layers.Input(shape=input_shape)
# 特征提取器
x = keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu')(input_img)
x = keras.layers.MaxPooling2D((2, 2))(x)
x = keras.layers.Conv2D(64, (3, 3), padding='same', activation='relu')(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x = keras.layers.Conv2D(128, (3, 3), padding='same', activation='relu')(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(128, activation='relu')(x)
features = keras.layers.Dense(32, activation='relu')(x)
# 分类器
class_outputs = keras.layers.Dense(num_classes, activation='softmax')(features)
# 领域分类器
domain_outputs = keras.layers.Dense(1, activation='sigmoid')(features)
# 定义模型
model = keras.models.Model(inputs=input_img, outputs=[class_outputs, domain_outputs])
# 编译模型
model.compile(optimizer='adam',
loss={'dense_2': 'categorical_crossentropy', 'dense_3': 'binary_crossentropy'},
loss_weights={'dense_2': 1., 'dense_3': 1.},
metrics={'dense_2': 'accuracy', 'dense_3': 'accuracy'})
```
6. 训练模型
```python
# 定义训练参数
epochs = 10
batch_size = 32
# 训练模型
history = model.fit(train_data, {'dense_2': train_labels, 'dense_3': np.zeros(len(train_data))},
validation_data=(val_data, {'dense_2': val_labels, 'dense_3': np.ones(len(val_data))}),
epochs=epochs,
batch_size=batch_size)
```
7. 测试模型
```python
# 测试模型
test_loss, test_acc = model.evaluate(test_data, {'dense_2': test_labels, 'dense_3': np.ones(len(test_data))})
print('Test accuracy:', test_acc)
```
阅读全文