FPGA数字时钟设计代码,可调整时间功能

时间: 2023-06-20 10:04:39 浏览: 215
以下是一个简单的FPGA数字时钟设计代码,具有可调整时间功能。代码使用VHDL语言编写,使用FPGA板上的时钟信号作为时钟输入,并使用七段数码管显示时间。 ``` library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; entity digital_clock is Port ( clk : in STD_LOGIC; reset : in STD_LOGIC; adjust : in STD_LOGIC; sevenseg_out : out STD_LOGIC_VECTOR (6 downto 0)); end digital_clock; architecture Behavioral of digital_clock is signal seconds: unsigned(5 downto 0); signal minutes: unsigned(5 downto 0); signal hours: unsigned(4 downto 0); signal count: unsigned(21 downto 0); begin process(clk,reset) begin if reset = '1' then seconds <= (others => '0'); minutes <= (others => '0'); hours <= (others => '0'); count <= (others => '0'); elsif rising_edge(clk) then if count = 1000000 then count <= (others => '0'); seconds <= seconds + 1; else count <= count + 1; end if; if seconds = 60 then seconds <= (others => '0'); minutes <= minutes + 1; end if; if minutes = 60 then minutes <= (others => '0'); hours <= hours + 1; end if; if hours = 24 then hours <= (others => '0'); end if; end if; end process; process(adjust) begin if adjust = '1' then if seconds = 59 then seconds <= (others => '0'); else seconds <= seconds + 1; end if; end if; end process; process(seconds, minutes, hours) begin case seconds is when 0 => sevenseg_out <= "0000001"; when 1 => sevenseg_out <= "1001111"; when 2 => sevenseg_out <= "0010010"; when 3 => sevenseg_out <= "0000110"; when 4 => sevenseg_out <= "1001100"; when 5 => sevenseg_out <= "0100100"; when 6 => sevenseg_out <= "0100000"; when 7 => sevenseg_out <= "0001111"; when 8 => sevenseg_out <= "0000000"; when 9 => sevenseg_out <= "0000100"; when 10 => sevenseg_out <= "0001000"; when 11 => sevenseg_out <= "1100000"; when 12 => sevenseg_out <= "0110001"; when 13 => sevenseg_out <= "1000010"; when 14 => sevenseg_out <= "0100001"; when 15 => sevenseg_out <= "0111001"; when 16 => sevenseg_out <= "0010000"; when 17 => sevenseg_out <= "0011110"; when 18 => sevenseg_out <= "0001001"; when 19 => sevenseg_out <= "0011000"; when 20 => sevenseg_out <= "0000010"; when 21 => sevenseg_out <= "0000001"; when 22 => sevenseg_out <= "0000110"; when 23 => sevenseg_out <= "0010000"; when others => sevenseg_out <= "1111111"; end case; case minutes is when 0 => sevenseg_out(13 downto 7) <= "0000001"; when 1 => sevenseg_out(13 downto 7) <= "1001111"; when 2 => sevenseg_out(13 downto 7) <= "0010010"; when 3 => sevenseg_out(13 downto 7) <= "0000110"; when 4 => sevenseg_out(13 downto 7) <= "1001100"; when 5 => sevenseg_out(13 downto 7) <= "0100100"; when 6 => sevenseg_out(13 downto 7) <= "0100000"; when 7 => sevenseg_out(13 downto 7) <= "0001111"; when 8 => sevenseg_out(13 downto 7) <= "0000000"; when 9 => sevenseg_out(13 downto 7) <= "0000100"; when 10 => sevenseg_out(13 downto 7) <= "0001000"; when 11 => sevenseg_out(13 downto 7) <= "1100000"; when 12 => sevenseg_out(13 downto 7) <= "0110001"; when 13 => sevenseg_out(13 downto 7) <= "1000010"; when 14 => sevenseg_out(13 downto 7) <= "0100001"; when 15 => sevenseg_out(13 downto 7) <= "0111001"; when 16 => sevenseg_out(13 downto 7) <= "0010000"; when 17 => sevenseg_out(13 downto 7) <= "0011110"; when 18 => sevenseg_out(13 downto 7) <= "0001001"; when 19 => sevenseg_out(13 downto 7) <= "0011000"; when 20 => sevenseg_out(13 downto 7) <= "0000010"; when 21 => sevenseg_out(13 downto 7) <= "0000001"; when 22 => sevenseg_out(13 downto 7) <= "0000110"; when 23 => sevenseg_out(13 downto 7) <= "0010000"; when 24 => sevenseg_out(13 downto 7) <= "0001000"; when 25 => sevenseg_out(13 downto 7) <= "0000010"; when 26 => sevenseg_out(13 downto 7) <= "0010010"; when 27 => sevenseg_out(13 downto 7) <= "0001100"; when 28 => sevenseg_out(13 downto 7) <= "0110000"; when 29 => sevenseg_out(13 downto 7) <= "0100010"; when 30 => sevenseg_out(13 downto 7) <= "0110000"; when 31 => sevenseg_out(13 downto 7) <= "0100000"; when 32 => sevenseg_out(13 downto 7) <= "0011001"; when 33 => sevenseg_out(13 downto 7) <= "0000011"; when 34 => sevenseg_out(13 downto 7) <= "0000000"; when 35 => sevenseg_out(13 downto 7) <= "0000101"; when 36 => sevenseg_out(13 downto 7) <= "0001001"; when 37 => sevenseg_out(13 downto 7) <= "1100001"; when 38 => sevenseg_out(13 downto 7) <= "0110001"; when 39 => sevenseg_out(13 downto 7) <= "0001101"; when 40 => sevenseg_out(13 downto 7) <= "0000011"; when 41 => sevenseg_out(13 downto 7) <= "0000100"; when 42 => sevenseg_out(13 downto 7) <= "0010000"; when 43 => sevenseg_out(13 downto 7) <= "0100111"; when 44 => sevenseg_out(13 downto 7) <= "0010001"; when 45 => sevenseg_out(13 downto 7) <= "0001000"; when 46 => sevenseg_out(13 downto 7) <= "0100001"; when 47 => sevenseg_out(13 downto 7) <= "0100101"; when 48 => sevenseg_out(13 downto 7) <= "0000010"; when 49 => sevenseg_out(13 downto 7) <= "0000011"; when 50 => sevenseg_out(13 downto 7) <= "0000000"; when 51 => sevenseg_out(13 downto 7) <= "0100110"; when 52 => sevenseg_out(13 downto 7) <= "0111001"; when 53 => sevenseg_out(13 downto 7) <= "0010010"; when 54 => sevenseg_out(13 downto 7) <= "0000110"; when 55 => sevenseg_out(13 downto 7) <= "0000010"; when 56 => sevenseg_out(13 downto 7) <= "0010000"; when 57 => sevenseg_out(13 downto 7) <= "0000100"; when 58 => sevenseg_out(13 downto 7) <= "0000000"; when 59 => sevenseg_out(13 downto 7) <= "0000010"; when others => sevenseg_out(13 downto 7) <= "1111111"; end case; case hours is when 0 => sevenseg_out(20 downto 14) <= "0000001"; when 1 => sevenseg_out(20 downto 14) <= "1001111"; when 2 => sevenseg_out(20 downto 14) <= "0010010"; when 3 => sevenseg_out(20 downto 14) <= "0000110"; when 4 => sevenseg_out(20 downto 14) <= "1001100"; when 5 => sevenseg_out(20 downto 14) <= "0100100"; when 6 => sevenseg_out(20 downto 14) <= "0100000"; when 7 => sevenseg_out(20 downto 14) <= "0001111"; when 8 => sevenseg_out(20 downto 14) <= "0000000"; when 9 => sevenseg_out(20 downto 14) <= "0000100"; when 10 => sevenseg_out(20 downto 14) <= "0001000"; when 11 => sevenseg_out(20 downto 14) <= "1100000"; when 12 => sevenseg_out(20 downto 14) <= "0110001"; when 13 => sevenseg_out(20 downto 14) <= "1000010"; when 14 => sevenseg_out(20 downto 14) <= "0100001"; when 15 => sevenseg_out(20 downto 14) <= "0111001"; when 16 => sevenseg_out(20 downto 14) <= "0010000"; when 17 => sevenseg_out(20 downto 14) <= "0011110"; when 18 => sevenseg_out(20 downto 14) <= "0001001"; when 19 => sevenseg_out(20 downto 14) <= "0011000"; when 20 => sevenseg_out(20 downto 14) <= "0000010"; when 21 => sevenseg_out(20 downto 14) <= "0000001"; when 22 => sevenseg_out(20 downto 14) <= "0000110"; when 23 => sevenseg_out(20 downto 14) <= "0010000"; when others => sevenseg_out(20 downto 14) <= "1111111"; end case; end process; end Behavioral; ``` 该代码包含三个主要进程。第一个进程负责计算时间,并在每秒钟更新七段数码管显示。第二个进程负责在调整信号被触发时调整时间。第三个进程负责将当前时间转换为七段数码管的输入。 在FPGA板上实现该代码后,您可以使用adjust输入信号在需要时调整当前时间。

相关推荐

最新推荐

recommend-type

FPGA数字时钟代码与原理

"FPGA数字时钟代码与原理" 在本实验中,我们将学习如何设计和实现一个基于FPGA的数字时钟,包括时钟的硬件设计、时钟的原理、秒脉冲发生器、计数显示部分和时钟调整部分。我们将使用Verilog HDL语言来描述数字时钟...
recommend-type

基于FPGA的PWM的Verilog代码

在本文中,我们将详细介绍基于FPGA的PWM的Verilog代码的设计和实现。该设计使用Verilog语言编写,实现了基于FPGA的PWM控制器,通过四个按键控制计数器最大值和比较强输入基数,实现脉冲宽度的加减和PWM周期的增加与...
recommend-type

基于Xilinx FPGA的数字钟设计

基于Xilinx FPGA的多功能数字钟设计是一项综合性的项目,旨在通过Verilog语言实现一个具有基本显示、调时、电台报时和闹钟功能的数字钟。该设计涵盖了可编程逻辑器件的应用开发技术、EDA软件的使用、Verilog设计方法...
recommend-type

基于VHDL语言的数字时钟设计

在VHDL设计流程中,设计者首先编写描述数字时钟行为的代码,然后在EDA工具(如Max+Plus II)中编译和仿真,验证设计是否符合预期。一旦通过仿真,设计可以被综合并下载到CPLD(复杂可编程逻辑器件)或FPGA(现场可...
recommend-type

基于FPGA设计多功能数字钟(VHDL程序)

本文所设计的数字钟具有通过reset键对时、 分、 秒调整功能.该设计分为六个部分: 六进制计数器 counter6,十进制计数器 counter10 ,二十四进制计数器 counter24, 时钟模块 bclock, LED扫描显示模块 ledctrl,...
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。