DPK-means算法 python
时间: 2023-10-26 13:17:56 浏览: 214
python实现的k-means算法
5星 · 资源好评率100%
DPK-means算法是一种基于密度的聚类算法,可以用于发现数据中的簇结构。以下是DPK-means算法的Python代码实现:
```
import numpy as np
from sklearn.cluster import KMeans
def dpkmeans(X, k, alpha):
n = len(X)
d = len(X[0])
centroids = [X[0]]
clusters = [0] * n
for i in range(1, n):
dists = [np.linalg.norm(X[i] - c) for c in centroids]
if min(dists) >= alpha:
centroids.append(X[i])
clusters[i] = len(centroids) - 1
else:
clusters[i] = dists.index(min(dists))
while len(centroids) < k:
max_dist = 0
max_i = None
for i in range(n):
if clusters[i] == -1:
dists = [np.linalg.norm(X[i] - c) for c in centroids]
if min(dists) > max_dist:
max_dist = min(dists)
max_i = i
if max_i is not None:
centroids.append(X[max_i])
clusters[max_i] = len(centroids) - 1
kmeans = KMeans(n_clusters=k, init=np.array(centroids))
kmeans.fit(X)
return kmeans.labels_
```
其中,参数X是一个n x d的矩阵,表示n个d维数据点;k是簇的个数;alpha是一个控制簇密度的阈值。函数返回一个长度为n的列表,表示每个数据点所属的簇的标签。
阅读全文