yolov5如何改进,有哪些改进方法,如果有请用代码和结构图举例
时间: 2024-05-03 10:23:21 浏览: 231
1. 更好的backbone网络
当前的YOLOv5使用的是CSPDarknet53作为backbone网络,可以考虑使用更好的backbone网络来提高检测性能。
举例:使用EfficientNet作为backbone网络,代码如下:
```
import torch.nn as nn
from efficientnet_pytorch import EfficientNet
class EfficientNetBackbone(nn.Module):
def __init__(self, version='b0'):
super(EfficientNetBackbone, self).__init__()
self.net = EfficientNet.from_pretrained(f'efficientnet-{version}')
def forward(self, x):
x = self.net.extract_features(x)
return x
```
2. 更好的anchor生成方法
当前的YOLOv5使用的是k-means聚类方法生成anchor,可以考虑使用更好的anchor生成方法来提高检测性能。
举例:使用YOLOv4的anchor生成方法,代码如下:
```
import numpy as np
def generate_anchors(scales, ratios, feature_map_sizes):
anchors = []
for k, f in enumerate(feature_map_sizes):
for i in range(f[0]):
for j in range(f[1]):
cx = (j + 0.5) / f[1]
cy = (i + 0.5) / f[0]
for ratio in ratios:
for scale in scales:
w = scale * np.sqrt(ratio)
h = scale / np.sqrt(ratio)
anchors.append([cx, cy, w, h])
return np.array(anchors)
scales = [1.0, 2.0, 3.0]
ratios = [0.5, 1.0, 2.0]
feature_map_sizes = [(19, 19), (38, 38), (76, 76)]
anchors = generate_anchors(scales, ratios, feature_map_sizes)
```
3. 更好的损失函数
当前的YOLOv5使用的是MSE损失函数,可以考虑使用更好的损失函数来提高检测性能。
举例:使用Focal Loss作为损失函数,代码如下:
```
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss(nn.Module):
def __init__(self, alpha=0.25, gamma=2.0, reduction='mean'):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.reduction = reduction
def forward(self, inputs, targets):
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')
pt = torch.exp(-ce_loss)
focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss
if self.reduction == 'mean':
return torch.mean(focal_loss)
elif self.reduction == 'sum':
return torch.sum(focal_loss)
else:
return focal_loss
```
4. 更好的数据增强
当前的YOLOv5使用的是一些基本的数据增强方法,可以考虑使用更好的数据增强方法来提高检测性能。
举例:使用CutMix作为数据增强方法,代码如下:
```
import numpy as np
import torch
import torch.nn.functional as F
def cutmix(data, targets, alpha=1.0):
indices = torch.randperm(data.size(0))
shuffled_data = data[indices]
shuffled_targets = targets[indices]
lam = np.random.beta(alpha, alpha)
bbx1, bby1, bbx2, bby2 = rand_bbox(data.size(), lam)
data[:, :, bbx1:bbx2, bby1:bby2] = shuffled_data[:, :, bbx1:bbx2, bby1:bby2]
targets = (targets, shuffled_targets, lam)
return data, targets
def rand_bbox(size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = np.int(W * cut_rat)
cut_h = np.int(H * cut_rat)
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
class CutMix(nn.Module):
def __init__(self, alpha=1.0):
super(CutMix, self).__init__()
self.alpha = alpha
def forward(self, inputs, targets):
if self.alpha > 0:
inputs, targets = cutmix(inputs, targets, self.alpha)
return inputs, targets
```
阅读全文