请用pytorch写出用于图像分类任务的cnn-attention模型的示例代码
时间: 2023-12-10 20:39:44 浏览: 86
好的,下面是一个简单的用于图像分类任务的CNN-Attention模型的PyTorch代码示例:
```python
import torch
import torch.nn as nn
class CNN_Attention(nn.Module):
def __init__(self, num_classes):
super(CNN_Attention, self).__init__()
# CNN layers
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
# Attention layers
self.attention = nn.Sequential(
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1),
nn.Sigmoid()
)
# Classifier layers
self.fc1 = nn.Linear(128, 64)
self.fc2 = nn.Linear(64, num_classes)
def forward(self, x):
# CNN layers
x = nn.functional.relu(self.conv1(x))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.conv2(x))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.conv3(x))
# Attention layers
attention_weights = self.attention(x.view(x.size(0), -1))
attention_weights = attention_weights.view(-1, 1, x.size(2) * x.size(3))
x = x.view(x.size(0), x.size(1), -1)
x = torch.bmm(attention_weights, x)
x = x.view(x.size(0), -1)
# Classifier layers
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
```
这个模型包含了三个卷积层和两个全连接层,其中 Attention 层用于计算每个特征图的权重,然后将这些特征图加权求和。注意,这里的 Attention 层使用了一个简单的全连接神经网络,但是可以根据任务的要求来调整 Attention 层的结构。
阅读全文