在matlab上y'=2*y./x + x.^2.*exp(x)用四阶标准龙格—库塔法、步长h = 0.1解数值解
时间: 2024-05-05 07:22:11 浏览: 90
可以按照以下步骤在 Matlab 中使用四阶标准龙格-库塔法求解该微分方程的数值解:
1. 定义微分方程
```matlab
function dydx = myode(x, y)
dydx = 2*y./x + x.^2.*exp(x);
end
```
2. 定义步长和求解区间
```matlab
h = 0.1;
xspan = [1 2];
```
3. 初始化初值条件
```matlab
y0 = 1;
x0 = xspan(1);
```
4. 使用龙格-库塔方法求解微分方程
```matlab
[x, y] = ode4(@myode, xspan, y0, h);
```
其中 `ode4` 是一个自定义函数,实现龙格-库塔方法的求解过程。其代码如下:
```matlab
function [x, y] = ode4(odefun, xspan, y0, h)
x0 = xspan(1);
xf = xspan(2);
x = x0:h:xf;
y = zeros(size(x));
y(1) = y0;
for n = 1:length(x)-1
k1 = odefun(x(n), y(n));
k2 = odefun(x(n)+h/2, y(n)+h/2*k1);
k3 = odefun(x(n)+h/2, y(n)+h/2*k2);
k4 = odefun(x(n)+h, y(n)+h*k3);
y(n+1) = y(n) + h/6*(k1 + 2*k2 + 2*k3 + k4);
end
end
```
5. 可视化数值解
```matlab
plot(x, y, '-o')
xlabel('x')
ylabel('y')
```
完整代码如下:
```matlab
function dydx = myode(x, y)
dydx = 2*y./x + x.^2.*exp(x);
end
function [x, y] = ode4(odefun, xspan, y0, h)
x0 = xspan(1);
xf = xspan(2);
x = x0:h:xf;
y = zeros(size(x));
y(1) = y0;
for n = 1:length(x)-1
k1 = odefun(x(n), y(n));
k2 = odefun(x(n)+h/2, y(n)+h/2*k1);
k3 = odefun(x(n)+h/2, y(n)+h/2*k2);
k4 = odefun(x(n)+h, y(n)+h*k3);
y(n+1) = y(n) + h/6*(k1 + 2*k2 + 2*k3 + k4);
end
end
h = 0.1;
xspan = [1 2];
y0 = 1;
[x, y] = ode4(@myode, xspan, y0, h);
plot(x, y, '-o')
xlabel('x')
ylabel('y')
```
阅读全文