flink电商用户行为分析并可视化代码
时间: 2023-07-13 12:20:59 浏览: 202
Flink电商用户行为分析源代码
以下是一个使用 Flink 进行电商用户行为分析并可视化的简单代码实现:
```java
// 定义用户行为数据结构体
public class UserBehavior {
public long userId;
public long itemId;
public int categoryId;
public String behavior;
public long timestamp;
}
// 从 Kafka 中读取用户行为数据,并进行实时处理
DataStream<String> stream = env.addSource(new FlinkKafkaConsumer<>("user_behavior", new SimpleStringSchema(), props));
DataStream<UserBehavior> behaviorStream = stream.map(new MapFunction<String, UserBehavior>() {
@Override
public UserBehavior map(String value) throws Exception {
String[] arr = value.split(",");
return new UserBehavior(Long.parseLong(arr[0]), Long.parseLong(arr[1]), Integer.parseInt(arr[2]), arr[3], Long.parseLong(arr[4]));
}
});
// 计算热门商品
DataStream<Tuple2<Long, Integer>> itemIdAndCountStream = behaviorStream
.filter(new FilterFunction<UserBehavior>() {
@Override
public boolean filter(UserBehavior userBehavior) throws Exception {
return "pv".equals(userBehavior.behavior);
}
})
.keyBy("itemId")
.timeWindow(Time.hours(1))
.apply(new WindowFunction<UserBehavior, Tuple2<Long, Integer>, Tuple, TimeWindow>() {
@Override
public void apply(Tuple tuple, TimeWindow window, Iterable<UserBehavior> input, Collector<Tuple2<Long, Integer>> out) throws Exception {
long itemId = tuple.getField(0);
int count = 0;
for (UserBehavior userBehavior : input) {
count++;
}
out.collect(Tuple2.of(itemId, count));
}
})
.keyBy(1)
.process(new KeyedProcessFunction<Tuple, Tuple2<Long, Integer>, Tuple2<Long, Integer>>() {
private MapState<Long, Long> itemState;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
MapStateDescriptor<Long, Long> itemStateDesc = new MapStateDescriptor<>("item-state", Types.LONG, Types.LONG);
itemState = getRuntimeContext().getMapState(itemStateDesc);
}
@Override
public void processElement(Tuple2<Long, Integer> input, Context context, Collector<Tuple2<Long, Integer>> out) throws Exception {
long itemId = input.f0;
long count = input.f1;
itemState.put(itemId, count);
context.timerService().registerEventTimeTimer(context.window().getEnd());
}
@Override
public void onTimer(long timestamp, OnTimerContext context, Collector<Tuple2<Long, Integer>> out) throws Exception {
Iterable<Map.Entry<Long, Long>> entries = itemState.entries();
List<Map.Entry<Long, Long>> itemList = new ArrayList<>();
for (Map.Entry<Long, Long> entry : entries) {
itemList.add(entry);
}
itemList.sort(new Comparator<Map.Entry<Long, Long>>() {
@Override
public int compare(Map.Entry<Long, Long> o1, Map.Entry<Long, Long> o2) {
return (int) (o2.getValue() - o1.getValue());
}
});
for (int i = 0; i < 10; i++) {
Map.Entry<Long, Long> entry = itemList.get(i);
out.collect(Tuple2.of(entry.getKey(), entry.getValue().intValue()));
}
}
});
// 将热门商品数据输出到 Elasticsearch
itemIdAndCountStream.addSink(new ElasticsearchSink.Builder<Tuple2<Long, Integer>>(httpHosts, new ElasticsearchSinkFunction<Tuple2<Long, Integer>>() {
public IndexRequest createIndexRequest(Tuple2<Long, Integer> element) {
Map<String, Object> json = new HashMap<>();
json.put("itemId", element.f0);
json.put("count", element.f1);
return Requests.indexRequest()
.index("hot_items")
.type("_doc")
.source(json);
}
@Override
public void process(Tuple2<Long, Integer> element, RuntimeContext ctx, RequestIndexer indexer) {
indexer.add(createIndexRequest(element));
}
}).build());
// 启动 Flink 任务
env.execute("E-commerce User Behavior Analysis");
```
以上代码实现了从 Kafka 中读取用户行为数据,计算热门商品并将结果输出到 Elasticsearch 中。你可以结合 Elasticsearch Kibana 进行可视化分析。
阅读全文