> fit_xgb_cls <- xgb.train( + data = dtrain, + eta = 0.3, + gamma = 0.001, + max_depth = 2, + subsample = 0.7, + colsample_bytree = 0.4, + objective = "survival:cox", + nrounds = 1000, + + verbose = 1, + print_every_n = 100, + early_stopping_rounds = 200 + ) Error in init(env) : For early stopping, watchlist must have at least one element
时间: 2024-01-19 19:03:48 浏览: 96
这个错误提示表明,您设置了`early_stopping_rounds`参数,但`watchlist`参数为空。`watchlist`参数用于跟踪模型在训练过程中的性能,并在性能不再改善时停止训练。因此,在使用`early_stopping_rounds`参数时,必须设置`watchlist`参数并提供至少一个数据集。
您需要将`watchlist`参数添加到`xgb.train`函数中。例如,您可以将其设置为以下内容:
```
watchlist <- list(train=dtrain, eval=dtest)
```
然后将`watchlist`参数添加到`xgb.train`函数中:
```
fit_xgb_cls <- xgb.train(
data = dtrain,
eta = 0.3,
gamma = 0.001,
max_depth = 2,
subsample = 0.7,
colsample_bytree = 0.4,
objective = "survival:cox",
nrounds = 1000,
verbose = 1,
print_every_n = 100,
early_stopping_rounds = 200,
watchlist = watchlist
)
```
这应该可以解决该错误。
相关问题
将以下代码生成的特征重要性排序图结果保留四位小数,params_0 = { 'booster': 'gbtree', 'objective': 'multi:softmax', 'num_class': 4, 'gamma': 0.1, 'max_depth': 7, 'lambda': 2, 'subsample': 0.8, 'colsample_bytree': 0.8, 'min_child_weight': 3, 'eta': 0.1, 'seed': 1000, 'gain': True, 'learning_rate': 0.1 } model_XGB_clf = xgb.train(params = params_0, dtrain = dtrain_0, num_boost_round = 30) # 预测 ans = model_XGB_clf.predict(dtest_0) # acc acc = metrics.accuracy_score(y_test, ans) print(acc) # 0.625866050808314 # 特征重要性排序 xgb.plot_importance(model_XGB_clf, importance_type='gain') plt.show() # 图片保存在目录下
由于无法运行该代码,我无法生成实际的特征重要性排序图。但是,我可以提供以下代码作为参考,以便生成特征重要性排序图并将其保存在指定的文件路径下:
```
import xgboost as xgb
import matplotlib.pyplot as plt
params_0 = {
'booster': 'gbtree',
'objective': 'multi:softmax',
'num_class': 4,
'gamma': 0.1,
'max_depth': 7,
'lambda': 2,
'subsample': 0.8,
'colsample_bytree': 0.8,
'min_child_weight': 3,
'eta': 0.1,
'seed': 1000,
'gain': True,
'learning_rate': 0.1
}
model_XGB_clf = xgb.train(params=params_0, dtrain=dtrain_0, num_boost_round=30)
# 预测
ans = model_XGB_clf.predict(dtest_0)
# acc
acc = metrics.accuracy_score(y_test, ans)
print(acc) # 0.625866050808314
# 特征重要性排序
fig, ax = plt.subplots(figsize=(12, 8))
xgb.plot_importance(model_XGB_clf, importance_type='gain', ax=ax)
plt.savefig('path/to/save/figure', dpi=300, bbox_inches='tight')
```
请将 `path/to/save/figure` 替换为您希望保存图像的文件路径。
将下列代码转换为matlab格式: from sklearn.model_selection import train_test_split train_x, test_x, train_y, test_y = train_test_split(np.array(data.iloc[:, [3,4,5,6,7,9,10,11,12,13,14,15]]), np.array(data.iloc[:, [5]]), test_size = 0.3) import xgboost as xgb from xgboost import plot_importance model = xgb.XGBRegressor(silent = 0, learning_rate = 0.05, eta = 0.1, gamma = 0.25, max_depth = 24, reg_lambda = 2, reg_alpha = 1, n_estimators = 300, seed = 999, objective ='reg:squarederror') model.fit(train_x, train_y, eval_metric = "rmse", eval_set = [(train_x, train_y), (test_x, test_y)], verbose = True)
以下是将给定的 Python 代码转换为 MATLAB 代码的示例:
```matlab
% 加载数据
data = readtable('data.csv');
train_x = table2array(data(:, [4,5,6,7,8,10,11,12,13,14,15,16]));
train_y = table2array(data(:, [6]));
% 拆分数据集
rng(42); % 设定随机数种子
[test_x, train_x, test_y, train_y] = split_data(train_x, train_y, 0.3);
% 训练 XGBoost 模型
model = xgboost;
model.silent = 0;
model.learning_rate = 0.05;
model.eta = 0.1;
model.gamma = 0.25;
model.max_depth = 24;
model.reg_lambda = 2;
model.reg_alpha = 1;
model.n_estimators = 300;
model.seed = 999;
model.objective = 'reg:squarederror';
% 训练模型并进行评估
model = fit(model, train_x, train_y, 'eval_set', [train_x, train_y; test_x, test_y], 'eval_metric', 'rmse', 'verbose', true);
```
在这个示例中,我们首先使用 `readtable` 函数加载数据。然后,我们将输入和输出变量分别存储在 `train_x` 和 `train_y` 中。接下来,我们使用 `split_data` 函数将数据集拆分为训练集和测试集。最后,我们定义了 XGBoost 模型的各种超参数,并使用 `fit` 函数进行训练和评估。
阅读全文