stm32f103zet6adc电压采集显示波形

时间: 2023-08-05 13:04:27 浏览: 56
好的,我理解了你的问题。你需要一个采集电压信号并将其显示为波形的方案。以下是一个基本的方案: 1. 确定电压范围和采样速率。例如,如果你需要测量的电压范围是0-3.3V,你可以选择使用ADC的12位模式(分辨率为4096)。如果你需要一个高速采样率,你可以选择使用DMA和双缓冲区模式。 2. 配置ADC模块。你需要设置ADC时钟,采样时间,通道等参数。例如,你需要选择ADC的输入通道,设置采样时间,以确保在读取信号之前,输入电压已经稳定。 3. 启动ADC转换。你可以使用软件触发或硬件触发方式启动ADC转换。在转换完成后,ADC会将结果存储在内部寄存器中。 4. 将ADC结果转换为电压值。根据ADC的分辨率和参考电压,可以将ADC结果转换为电压值,例如:V = (ADC_Value / 4096) * 3.3V。 5. 将电压值存储到缓冲区中。你可以使用数组或环形缓冲区来存储电压值。如果你需要高速采样率,你可以使用DMA和双缓冲区模式来实现。 6. 显示采集到的波形。你可以使用LCD显示屏或者OLED屏幕来显示采集到的波形。你需要使用图形库或者绘图库来绘制波形。你可以使用中断或者定时器来更新显示屏上的波形。 希望这些信息能够帮助你。如果你需要更详细的信息,请告诉我。
相关问题

stm32f103zet6利用示波器显示波形

### 回答1: STM32F103ZET6是一款常用的ARM Cortex-M3微控制器,具有高性能和低功耗的特点。示波器是一种测量电信号波形的工具,可以用于调试和验证电路设计,其中包括STM32芯片。本文介绍如何使用示波器显示STM32F103ZET6的波形。 首先,需要准备以下材料: - STM32F103ZET6开发板 - 示波器 - 外部信号源 接着,连接外部信号源到STM32开发板的ADC输入引脚。编程时需要确保ADC输入引脚设置正确,以便将采样值发送到示波器。 接下来,在STM32上编写代码来读取ADC输入引脚的模拟值。此处有多个方法,包括使用STM32的内置ADC模块或使用外部ADC芯片。选择哪个方式将取决于具体的应用需求和示波器的采样要求。需要注意的是,要注意时序和采样周期等参数。 一旦STM32可以读取ADC采样值,可以使用串行通信接口(如UART或SPI)将数据传输到示波器。然后,示波器可以将这些采样值解码为波形并显示在屏幕上。 需要注意的是,确保示波器和STM32之间的通信接口正确连接和配置,以便正确发送和接收数据。 通过以上步骤,就能够实现将STM32F103ZET6的波形显示在示波器上了。在实际应用中,需要根据具体需求进行细节调整和优化。 ### 回答2: STM32F103ZET6是一种基于ARM Cortex-M3架构的微控制器,它具有高性能、低功耗和丰富的外设资源,特别适用于嵌入式系统设计。使用示波器来显示波形可以有效地调试和测试STM32F103ZET6开发板的各种应用场景。 首先,在配置STM32F103ZET6开发板之前,我们需要安装和配置示波器软件。常用的示波器软件有PC端和单片机端两种类型。PC端软件主要包括Oscilloscope、LabVIEW和Matlab等,单片机端软件主要包括ADC采样和UART通信等方式。在选择示波器软件时,需要根据具体应用场景和需求进行选择。 其次,在进行示波器的连接和配置时,需要注意以下几个方面。首先,需要正确连接开发板和示波器的通信线路,包括地线、信号线和电源线等。其次,需要设置好示波器的采样率和触发方式,根据具体应用场景和波形特征进行选择。最后,需要编写相应的程序代码,将STM32F103ZET6的数据传输到示波器上进行显示。 使用示波器来显示波形可以应用于各种实际应用场景中,如教育、研究、工程设计和产品测试等。对于STM32F103ZET6开发板而言,示波器可以用于检测和调试各种外设资源的工作情况,例如液晶屏、蜂鸣器、LED灯和电机等,并且可以通过波形分析和诊断来找到潜在的故障和问题。 总之,STM32F103ZET6利用示波器显示波形具有重要的应用价值和实用性,可以帮助工程师和技术人员更加容易地开发和调试STM32F103ZET6开发板及相关应用。 ### 回答3: STM32F103ZET6是一款性能强大的ARM Cortex-M3内核微处理器,适合在各种电子设备中使用。示波器是一种电子测试仪器,用于显示信号波形的形状和各种特征,可以检测电路中的信号是否符合设计要求。 想要利用示波器在STM32F103ZET6上显示波形,我们需要进行以下几个步骤: 1. 准备示波器:首先需要确定所用示波器的通信协议,常用的通信协议有UART、SPI和I2C等。一般示波器都有提供相应的通信协议,我们需要按照示波器的说明文档连接示波器和STM32F103ZET6,并且正确设置通信协议和参数。 2. 配置STM32F103ZET6:在STM32F103ZET6上显示波形,我们还需要进行STM32F103ZET6的配置工作。这里我们需要用到STM32F103ZET6开发板自带的开发环境,例如Keil等。操作步骤如下: (1)在开发环境中创建一个新项目,并选择STM32F103ZET6作为芯片,配置芯片的时钟、GPIO等参数; (2)编写程序,使用相应的通信协议与示波器进行通信,获取示波器采集的波形数据; (3)对波形数据进行处理,调整幅值和时序等参数; 3. 显示波形:当获取处理好波形数据之后,我们可以选择将波形数据通过串口等方式输出,或者使用LCD、OLED等显示屏直接显示,这样我们就可以得到所需的波形图了。 需要注意的是,在这个过程中,由于不同示波器的通信方式和协议不同,所以具体的操作步骤和参数也可能会有所不同,需要仔细阅读示波器的说明文档和数据手册,并按照说明进行操作。同时,在STM32F103ZET6的配置过程中,也需要确保程序的正确性和稳定性,避免出现程序运行错误或崩溃等问题。

stm32f103zet6 adc采集方波三角波正弦波 标准库代码

以下是基于STM32F103ZET6芯片,使用标准库的ADC采集方波、三角波、正弦波的代码示例: ```c #include "stm32f10x.h" #include <math.h> #define ADC1_DR_Address ((uint32_t)0x4001244C) void RCC_Configuration(void); void GPIO_Configuration(void); void ADC_Configuration(void); void DMA_Configuration(void); void TIM_Configuration(void); void DAC_Configuration(void); void Waveform_Generation(void); uint16_t ADC_ConvertedValue[3]; int main(void) { RCC_Configuration(); GPIO_Configuration(); ADC_Configuration(); DMA_Configuration(); TIM_Configuration(); DAC_Configuration(); Waveform_Generation(); while(1) { } } void RCC_Configuration(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1 | RCC_APB2Periph_TIM1, ENABLE); RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE); } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); } void ADC_Configuration(void) { ADC_InitTypeDef ADC_InitStructure; ADC_DeInit(ADC1); ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 3; ADC_Init(ADC1, &ADC_InitStructure); ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5); ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_55Cycles5); ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_55Cycles5); ADC_DMACmd(ADC1, ENABLE); ADC_Cmd(ADC1, ENABLE); ADC_ResetCalibration(ADC1); while(ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); while(ADC_GetCalibrationStatus(ADC1)); } void DMA_Configuration(void) { DMA_InitTypeDef DMA_InitStructure; DMA_DeInit(DMA1_Channel1); DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)ADC_ConvertedValue; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_BufferSize = 3; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel1, &DMA_InitStructure); DMA_Cmd(DMA1_Channel1, ENABLE); } void TIM_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructInit(&TIM_TimeBaseStructure); TIM_TimeBaseStructure.TIM_Prescaler = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseStructure.TIM_Period = 719; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); TIM_Cmd(TIM1, ENABLE); } void DAC_Configuration(void) { DAC_InitTypeDef DAC_InitStructure; DAC_InitStructure.DAC_Trigger = DAC_Trigger_T2_TRGO; DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_Init(DAC_Channel_1, &DAC_InitStructure); DAC_Cmd(DAC_Channel_1, ENABLE); } void Waveform_Generation(void) { uint16_t i; while(1) { for(i = 0; i < 360; i++) { DAC_SetChannel1Data(DAC_Align_12b_R, (uint16_t)(2048 + 2047 * sin(i * 3.1415926 / 180.0))); TIM_SetCompare1(TIM1, i); while(!DMA_GetFlagStatus(DMA1_FLAG_TC1)); DMA_ClearFlag(DMA1_FLAG_TC1); } for(i = 360; i > 0; i--) { DAC_SetChannel1Data(DAC_Align_12b_R, (uint16_t)(2048 + 2047 * sin(i * 3.1415926 / 180.0))); TIM_SetCompare1(TIM1, i); while(!DMA_GetFlagStatus(DMA1_FLAG_TC1)); DMA_ClearFlag(DMA1_FLAG_TC1); } for(i = 0; i < 360; i++) { DAC_SetChannel1Data(DAC_Align_12b_R, (uint16_t)(i * 12)); TIM_SetCompare1(TIM1, i); while(!DMA_GetFlagStatus(DMA1_FLAG_TC1)); DMA_ClearFlag(DMA1_FLAG_TC1); } for(i = 360; i > 0; i--) { DAC_SetChannel1Data(DAC_Align_12b_R, (uint16_t)(i * 12)); TIM_SetCompare1(TIM1, i); while(!DMA_GetFlagStatus(DMA1_FLAG_TC1)); DMA_ClearFlag(DMA1_FLAG_TC1); } for(i = 0; i < 360; i++) { DAC_SetChannel1Data(DAC_Align_12b_R, (uint16_t)(i * 11)); TIM_SetCompare1(TIM1, i); while(!DMA_GetFlagStatus(DMA1_FLAG_TC1)); DMA_ClearFlag(DMA1_FLAG_TC1); } for(i = 360; i > 0; i--) { DAC_SetChannel1Data(DAC_Align_12b_R, (uint16_t)(i * 11)); TIM_SetCompare1(TIM1, i); while(!DMA_GetFlagStatus(DMA1_FLAG_TC1)); DMA_ClearFlag(DMA1_FLAG_TC1); } } } ``` 这段代码使用了ADC采集模拟信号,并通过DMA传输到内存中,再由DAC输出到模拟输出端口。其中,TIM1用于生成PWM波形,通过改变TIM1的占空比来改变输出信号的幅值。同时,程序中还使用了sine函数来生成正弦波。需要注意的是,这里使用了DMA传输数据,因此需要在main函数的while(1)中加入一个空循环,以让程序不退出。

相关推荐

最新推荐

recommend-type

启明欣欣stm32f103rct6开发板原理图

启明欣欣stm32f103rct6开发板原理图 哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈...
recommend-type

STM32F103RET6TR中文数据手册.pdf

STM32F103RET6TR中文数据手册,同样适用于STM32F103RE 、 STM32F103ZE 、 STM32F103VE、STM32F103RD、 STM32F103VD、 STM32F103ZD、STM32F103RC、 STM32F103VC、 STM32F103ZC
recommend-type

集团企业数字孪生平台信息化蓝图(应用系统架构、数据架构、IT基础设施与信息安全架构、信息化组织与管控.pptx

集团企业数字孪生平台信息化蓝图(应用系统架构、数据架构、IT基础设施与信息安全架构、信息化组织与管控.pptx
recommend-type

基于微信小程序的助农扶贫小程序

大学生毕业设计、大学生课程设计作业
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依