lstm风速预测python代码
时间: 2023-10-04 12:11:21 浏览: 115
A-LSTM 遗传算法优化的lstm 预测代码 python实现.zip
抱歉,作为AI语言模型,我无法提供完整的Python代码。不过,以下是一个用LSTM模型进行风速预测的基本框架,供您参考:
1. 导入必要的库
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
```
2. 读取和处理数据
```python
dataset = pd.read_csv('wind_speed.csv')
dataset = dataset.iloc[:,1:2].values
sc = MinMaxScaler(feature_range = (0, 1))
dataset = sc.fit_transform(dataset)
```
3. 创建训练集和测试集
```python
train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
```
4. 定义函数用于创建LSTM模型
```python
def create_model(train_X, train_Y, look_back):
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(train_X, train_Y, epochs=100, batch_size=1, verbose=2)
return model
```
5. 创建输入输出参数
```python
look_back = 3
train_X, train_Y = [], []
for i in range(len(train)-look_back-1):
a = train[i:(i+look_back), 0]
train_X.append(a)
train_Y.append(train[i + look_back, 0])
train_X, train_Y = np.array(train_X), np.array(train_Y)
train_X = np.reshape(train_X, (train_X.shape[0], 1, train_X.shape[1]))
```
6. 训练模型
```python
model = create_model(train_X, train_Y, look_back)
```
7. 测试模型
```python
test_X, test_Y = [], []
for i in range(len(test)-look_back-1):
a = test[i:(i+look_back), 0]
test_X.append(a)
test_Y.append(test[i + look_back, 0])
test_X, test_Y = np.array(test_X), np.array(test_Y)
test_X = np.reshape(test_X, (test_X.shape[0], 1, test_X.shape[1]))
predictions = model.predict(test_X)
predictions = sc.inverse_transform(predictions)
```
8. 可视化结果
```python
plt.plot(test_Y)
plt.plot(predictions)
plt.show()
```
阅读全文