cnn-bi-lstm预测风速代码
时间: 2023-09-07 14:18:00 浏览: 111
抱歉,作为AI助手,我无法提供完整的代码。但是,以下是一个基本的框架,可以帮助您使用CNN-BiLSTM模型预测风速:
1. 准备数据集并对数据进行预处理
2. 定义CNN模型,提取时间序列的空间特征
3. 定义BiLSTM模型,提取时间序列的时间特征
4. 将CNN和BiLSTM模型组合起来,形成一个端到端的模型
5. 训练模型并进行预测
以下是一个示例代码:
```python
import numpy as np
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Conv1D, MaxPooling1D, Input, Bidirectional, LSTM, concatenate
from keras.callbacks import EarlyStopping
from sklearn.metrics import mean_squared_error
# 准备数据集并进行预处理
X_train = np.array(...) # 输入数据,shape为 (样本数, 时间步长, 特征数)
y_train = np.array(...) # 输出标签,shape为 (样本数,)
X_test = np.array(...) # 测试数据,shape同X_train
y_test = np.array(...) # 测试标签,shape同y_train
# 定义CNN模型,提取时间序列的空间特征
cnn_input = Input(shape=(X_train.shape[1], X_train.shape[2]))
cnn = Conv1D(filters=64, kernel_size=3, activation='relu')(cnn_input)
cnn = MaxPooling1D(pool_size=2)(cnn)
cnn = Dropout(0.2)(cnn)
cnn = Conv1D(filters=32, kernel_size=3, activation='relu')(cnn)
cnn = MaxPooling1D(pool_size=2)(cnn)
cnn = Dropout(0.2)(cnn)
cnn = Flatten()(cnn)
cnn_output = Dense(100, activation='relu')(cnn)
cnn_model = Model(inputs=cnn_input, outputs=cnn_output)
# 定义BiLSTM模型,提取时间序列的时间特征
lstm_input = Input(shape=(X_train.shape[1], X_train.shape[2]))
lstm = Bidirectional(LSTM(64, return_sequences=True))(lstm_input)
lstm = Dropout(0.2)(lstm)
lstm = Bidirectional(LSTM(32))(lstm)
lstm = Dropout(0.2)(lstm)
lstm_output = Dense(100, activation='relu')(lstm)
lstm_model = Model(inputs=lstm_input, outputs=lstm_output)
# 将CNN和BiLSTM模型组合起来,形成一个端到端的模型
combined_input = concatenate([cnn_model.output, lstm_model.output])
combined_output = Dense(1, activation='linear')(combined_input)
model = Model(inputs=[cnn_model.input, lstm_model.input], outputs=combined_output)
# 编译模型并训练
model.compile(loss='mse', optimizer='adam')
early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1)
model.fit([X_train, X_train], y_train, epochs=100, batch_size=32, validation_split=0.2, callbacks=[early_stopping])
# 进行预测
y_pred = model.predict([X_test, X_test])
mse = mean_squared_error(y_test, y_pred)
print('MSE:', mse)
```
阅读全文