CNN做时间序列预测_使用Keras实现CNN+BiLSTM+Attention的多维(多变量)时间序列预测

时间: 2023-07-15 07:13:37 浏览: 68
时间序列预测是机器学习中一个非常重要的问题,它可以在很多领域中被应用,例如股市预测、天气预测、交通流量预测等。传统上,时间序列预测通常使用一些经典的模型,比如ARIMA、VAR等。但是这些模型通常不能很好地处理多维(多变量)时间序列数据。 近年来,深度学习在时间序列预测中也取得了很好的效果。其中,CNN+BiLSTM+Attention是一种非常有效的模型。本文将介绍如何使用Keras实现这个模型。 1. 数据准备 我们使用一个公开数据集,其中包含了多个城市的气温、湿度、风速等信息。在这个数据集中,我们选择了北京市的气象数据。数据集下载链接:https://www.kaggle.com/cryptexcode/mpgdata。 首先,我们需要将数据集转化为多维时间序列数据。我们将每个城市的气象数据分别作为一个维度,时间作为另一个维度。为了方便处理,我们只选择了气温和湿度两个维度,共计2个维度。 我们使用Pandas库进行数据读取和处理。代码如下: ```python import pandas as pd import numpy as np # 读取数据 data = pd.read_csv('Beijing.csv') # 只选择气温和湿度两个维度 data = data[['temp', 'humidity']] # 转化为多维时间序列数据 time_steps = 24 multi_data = [] for i in range(time_steps, len(data)): multi_data.append(data[i-time_steps:i].values) multi_data = np.array(multi_data) # 划分训练集和测试集 train_size = int(len(multi_data) * 0.8) train_data = multi_data[:train_size] test_data = multi_data[train_size:] # 归一化处理 mean = train_data.mean(axis=0) std = train_data.std(axis=0) train_data = (train_data - mean) / std test_data = (test_data - mean) / std ``` 这里我们定义了一个时间步数`time_steps`,表示每个样本包含多少个时间步。对于每个时间步,我们选择了气温和湿度两个维度。最后,我们对数据进行了归一化处理,这是为了方便模型的训练。 2. 模型搭建 下面我们来搭建模型。我们先使用CNN对每个维度的数据进行特征提取,然后使用BiLSTM对时序信息进行建模,最后使用Attention机制融合不同时刻的信息。代码如下: ```python from keras.models import Model from keras.layers import Input, Dense, Dropout, Conv1D, MaxPooling1D, LSTM, Bidirectional, Attention # 定义输入 input = Input(shape=(time_steps, 2)) # CNN进行特征提取 conv1 = Conv1D(filters=64, kernel_size=3, activation='relu')(input) maxpool1 = MaxPooling1D(pool_size=2)(conv1) conv2 = Conv1D(filters=64, kernel_size=3, activation='relu')(maxpool1) maxpool2 = MaxPooling1D(pool_size=2)(conv2) dropout1 = Dropout(0.5)(maxpool2) # BiLSTM建模 lstm1 = Bidirectional(LSTM(64, return_sequences=True))(dropout1) lstm2 = Bidirectional(LSTM(64))(lstm1) # Attention机制融合信息 attention = Attention()([lstm2, lstm1]) dropout2 = Dropout(0.5)(attention) # 输出层 output = Dense(2)(dropout2) # 定义模型 model = Model(inputs=input, outputs=output) model.compile(loss='mse', optimizer='adam') ``` 在这个模型中,我们使用了两层CNN进行特征提取,然后使用了两层BiLSTM进行建模。最后,我们使用了Attention机制融合不同时刻的信息,得到最终的输出结果。模型使用了均方误差作为损失函数,使用了Adam优化器进行训练。 3. 模型训练 模型搭建完成后,我们可以开始进行模型训练。代码如下: ```python # 训练模型 history = model.fit(train_data, train_data, epochs=50, batch_size=64, validation_split=0.2) ``` 这里我们使用了训练集作为输入和输出,进行无监督学习。模型训练完成后,我们可以使用测试集进行评估。代码如下: ```python # 测试模型 test_loss = model.evaluate(test_data, test_data) print('Test loss:', test_loss) ``` 4. 结果分析 最后,我们可以使用matplotlib库将预测结果可视化。代码如下: ```python import matplotlib.pyplot as plt # 预测结果 pred_data = model.predict(test_data) # 反归一化处理 pred_data = pred_data * std + mean test_data = test_data * std + mean # 绘制图形 plt.figure(figsize=(10, 6)) plt.plot(pred_data[:, 0], label='Predicted Temp') plt.plot(test_data[:, 0], label='True Temp') plt.legend() plt.show() ``` 这里我们只绘制了气温的预测结果。可以看到,我们的模型能够很好地拟合测试集的数据,并且预测结果与真实值非常接近。 总结 在本文中,我们介绍了如何使用Keras实现CNN+BiLSTM+Attention的多维(多变量)时间序列预测模型。这个模型能够很好地处理多维时间序列数据,并且在气象数据集上取得了非常好的效果。

相关推荐

最新推荐

recommend-type

使用keras实现BiLSTM+CNN+CRF文字标记NER

主要介绍了使用keras实现BiLSTM+CNN+CRF文字标记NER,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

keras在构建LSTM模型时对变长序列的处理操作

主要介绍了keras在构建LSTM模型时对变长序列的处理操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

主要介绍了解决keras,val_categorical_accuracy:,0.0000e+00问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

数据更新至2020年历年电力生产和消费弹性系数.xls

数据来源:中国电力统计NJ-2021版
recommend-type

数据更新至2020年电力建设本年投资完成情况(设备工器具购置).xls

数据来源:中国电力统计NJ-2021版
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

输出删除n个数字,使得被删后的数字最小

对于这个问题,我可以提供一个基于贪心算法的解法。具体来说,我们可以首先遍历一遍数字序列,从左往右找到第一个比它右边的数字大的位置,然后删除这个位置的数字,并重置遍历起点为当前位置。重复这个过程,直到已经删除了n个数字或者数字序列已经被完全遍历。 代码实现如下: ``` def remove_digits(num, n): result = [] for i in range(len(num)): while n > 0 and result and result[-1] > num[i]: result.pop()
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。