编写一段matlab实现EM算法的代码
时间: 2024-02-02 11:05:24 浏览: 90
混合高斯em算法matlab源码可算三个参数.7z
以下是一个简单的 Matlab 实现 EM 算法的例子,用于高斯混合模型的参数估计:
```
% 假设数据集 X 是一个 n x d 的矩阵,其中 n 表示数据点的数量,d 表示特征的维度
% num_clusters 是高斯混合模型中高斯分布的数量
% tol 是 EM 算法的收敛阈值
function [cluster_means, cluster_covs, cluster_weights] = em_algorithm(X, num_clusters, tol)
n = size(X, 1);
d = size(X, 2);
% 初始化高斯分布的均值、协方差与权重
cluster_means = rand(num_clusters, d);
cluster_covs = repmat(eye(d), [1, 1, num_clusters]);
cluster_weights = ones(1, num_clusters) / num_clusters;
log_likelihood_old = -inf;
log_likelihood_new = 0;
% 开始迭代
while abs(log_likelihood_new - log_likelihood_old) > tol
% E 步骤:计算每个数据点属于每个高斯分布的概率
for i = 1:num_clusters
cluster_covs(:, :, i) = diag(diag(cluster_covs(:, :, i)));
cluster_inv_covs(:, :, i) = inv(cluster_covs(:, :, i));
cluster_dets(i) = det(cluster_covs(:, :, i));
end
cluster_probs = zeros(n, num_clusters);
for i = 1:num_clusters
cluster_probs(:, i) = cluster_weights(i) * mvnpdf(X, cluster_means(i, :), cluster_covs(:, :, i));
end
cluster_probs = cluster_probs ./ sum(cluster_probs, 2);
% M 步骤:更新高斯分布的均值、协方差与权重
cluster_weights = mean(cluster_probs, 1);
for i = 1:num_clusters
cluster_means(i, :) = sum(cluster_probs(:, i) .* X) / sum(cluster_probs(:, i));
cluster_covs(:, :, i) = ((X - cluster_means(i, :))' * diag(cluster_probs(:, i)) * (X - cluster_means(i, :))) / sum(cluster_probs(:, i));
end
% 计算对数似然函数值
log_likelihood_old = log_likelihood_new;
log_likelihood_new = sum(log(sum(cluster_probs, 2)));
end
```
以上代码实现了 EM 算法的核心步骤,即 E 步骤和 M 步骤,其中 E 步骤计算每个数据点属于每个高斯分布的概率,M 步骤更新高斯分布的均值、协方差与权重。在迭代过程中,通过计算对数似然函数值的变化来判断算法是否已经收敛。
阅读全文