weight_norm()如何使用
时间: 2023-05-12 12:04:38 浏览: 295
weight_norm()是一个用于PyTorch中的函数,它可以对模型中的权重进行归一化处理。使用方法如下:
1. 导入weight_norm函数:from torch.nn.utils import weight_norm
2. 在定义模型的时候,对需要进行归一化处理的权重添加weight_norm函数,例如:
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = weight_norm(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1))
self.conv2 = weight_norm(nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1))
self.fc1 = weight_norm(nn.Linear(128 * 32 * 32, 1024))
self.fc2 = weight_norm(nn.Linear(1024, 10))
3. 在训练模型的时候,对模型中的权重进行归一化处理,例如:
model = MyModel()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 对模型中的权重进行归一化处理
nn.utils.weight_norm(model.conv1, name='weight')
nn.utils.weight_norm(model.conv2, name='weight')
nn.utils.weight_norm(model.fc1, name='weight')
nn.utils.weight_norm(model.fc2, name='weight')
4. 在测试模型的时候,不需要对模型中的权重进行归一化处理,例如:
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)