student_scores <- tibble::tribble( ~student_id, ~math_score, ~english_score, ~science_score, ~sports_score, 1, 75, 80, 85, 90, 2, 90, 85, 70, 75, 3, 80, 70, 75, 85, 4, 85, 90, 80, 70, 5, 70, 75, 90, 80 ) 提取上述数据的主成分,用recipes包实现。
时间: 2023-07-27 07:24:45 浏览: 111
好的,以下是使用`recipes`包提取主成分的代码:
```R
library(recipes)
# 创建数据框
student_scores <- tibble::tribble(
~student_id, ~math_score, ~english_score, ~science_score, ~sports_score,
1, 75, 80, 85, 90,
2, 90, 85, 70, 75,
3, 80, 70, 75, 85,
4, 85, 90, 80, 70,
5, 70, 75, 90, 80
)
# 创建recipe对象
student_recipe <- recipe(~., data = student_scores) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors()) %>%
step_pca(all_predictors(), num_comp = 2)
# 应用recipe对象
student_pca <- student_recipe %>% prep() %>% bake(new_data = NULL)
# 打印结果
student_pca
```
其中,`step_center`和`step_scale`用于对所有预测变量进行中心化和标准化,`step_pca`用于提取两个主成分。最后,`prep()`和`bake()`函数用于应用和执行recipe对象。
相关问题
def query_score(score_dict, student_id):解释一下
`query_score` 是一个函数,接受两个参数 `score_dict` 和 `student_id`。其中 `score_dict` 是一个字典类型,存储了学生的成绩信息,`student_id` 是一个字符串类型,表示要查询的学生的学号。
这个函数的作用是查询学号为 `student_id` 的学生的成绩,并返回查询结果。具体实现方式是通过字典的键值对来查找对应学号的成绩,如果找到则返回成绩,否则返回 `None`。
函数实现的代码如下:
```python
def query_score(score_dict, student_id):
if student_id in score_dict:
return score_dict[student_id]
else:
return None
```
这个函数首先使用 `in` 关键字来判断 `student_id` 是否在 `score_dict` 中,如果存在则返回对应的成绩,否则返回 `None`。
使用这个函数可以方便地查询学生的成绩信息,比如在上面的学号查询和成绩排序系统中调用了这个函数来查询对应学号的成绩:
```python
# 查询成绩
score = query_score(scores, student_id)
if score is None:
print('未找到对应学号的成绩。')
else:
print('学号 %s 的成绩是 %d。' % (student_id, score))
```
这个系统先调用 `query_score` 函数查询学号对应的成绩,如果返回的结果为 `None`,则输出未找到对应学号的成绩,否则输出学号和成绩。
帮我修改以下代码,使他们可以正确运行:scores <- dplyr::data_frame( person = rep(c("A", "B", "C"), each = 2), time = rep(c("pre", "post"), 3), class1 = round(rnorm(6, mean = 80, sd = 4), 0), class2 = round(jitter(class1, 15), 0) ) scores_1 <- scores %>% pivot_longer(cols = c("class1", "class2"), names_to = "class", values_to = "score") scores_2 <- scores %>% spread(key = time, value = class1:class2) scores_3 <- scores_1 %>% group_by(person, class) %>% mutate(diff = score[time == "post"] - score[time == "pre"]) %>% ungroup() scores_3 %>% ggplot(aes(x = class, y = score, color = ifelse(diff >= 0, "green", "red"), shape = person)) + geom_point(size = 3) + labs(x = "Class", y = "Score", color = "Score change", shape = "Person") + theme_classic()
您好,这段代码的问题在于 `data_frame()` 函数已经被弃用,应该使用 `tibble()` 函数来创建数据框。同时,`spread()` 函数也已经被弃用,应该使用 `pivot_wider()` 函数来进行数据透视。下面是修改后的代码:
```
library(tidyverse)
scores <- tibble(
person = rep(c("A", "B", "C"), each = 2),
time = rep(c("pre", "post"), 3),
class1 = round(rnorm(6, mean = 80, sd = 4), 0),
class2 = round(jitter(class1, 15), 0)
)
scores_1 <- scores %>%
pivot_longer(cols = c("class1", "class2"), names_to = "class", values_to = "score")
scores_2 <- scores %>%
pivot_wider(names_from = time, values_from = c(class1, class2), names_sep = "_")
scores_3 <- scores_1 %>%
group_by(person, class) %>%
mutate(diff = score[time == "post"] - score[time == "pre"]) %>%
ungroup()
scores_3 %>%
ggplot(aes(x = class, y = score, color = ifelse(diff >= 0, "green", "red"), shape = person)) +
geom_point(size = 3) +
labs(x = "Class", y = "Score", color = "Score change", shape = "Person") +
theme_classic()
```
这样,代码就可以正确运行了。
阅读全文