将lenet网络和convlstm结合,写代码pytorch
时间: 2024-02-26 17:56:16 浏览: 188
LeNet的pytorch实现
以下是一个简单的示例代码,将LeNet网络和ConvLSTM结合在一起,使用PyTorch实现:
```python
import torch
import torch.nn as nn
class LeNetConvLSTM(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size):
super(LeNetConvLSTM, self).__init__()
# LeNet网络部分
self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)
self.fc2 = nn.Linear(in_features=120, out_features=84)
# ConvLSTM部分
self.lstm = nn.LSTMCell(input_size, hidden_size)
self.hidden_size = hidden_size
self.kernel_size = kernel_size
self.padding = kernel_size // 2
def forward(self, x):
# LeNet网络部分
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16*5*5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
# 将输出转换为ConvLSTM所需的格式
batch_size, channels, height, width = x.shape
x = x.view(batch_size, channels, height*width)
x = x.permute(0, 2, 1)
# ConvLSTM部分
hx = torch.zeros(batch_size, self.hidden_size).to(x.device)
cx = torch.zeros(batch_size, self.hidden_size).to(x.device)
for i in range(height*width):
hx, cx = self.lstm(x[:, i, :], (hx, cx))
hx = hx.view(batch_size, self.hidden_size, 1, 1)
cx = cx.view(batch_size, self.hidden_size, 1, 1)
if i == 0:
output = hx
else:
output = torch.cat((output, hx), dim=1)
# 将输出转换为正常的格式
output = output.permute(0, 2, 3, 1)
output = output.view(batch_size, height, width, self.hidden_size)
return output
```
这个模型将输入图片经过LeNet网络处理后,再输入到ConvLSTM中进行时序处理,并返回输出。你可以根据自己的需求修改LeNet网络和ConvLSTM的参数。
阅读全文